Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2337

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2337

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2337 (TID: 11682), and it has 636 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric406 unique values
0 missing
molecule_id (row identifier)nominal636 unique values
0 missing
GGI9numeric237 unique values
0 missing
ATS8vnumeric385 unique values
0 missing
ATS8pnumeric369 unique values
0 missing
SpMax3_Bh.m.numeric235 unique values
0 missing
ATS7vnumeric375 unique values
0 missing
SpMax6_Bh.m.numeric309 unique values
0 missing
MAXDNnumeric467 unique values
0 missing
CATS2D_02_AAnumeric7 unique values
0 missing
GGI10numeric177 unique values
0 missing
SpMax3_Bh.e.numeric186 unique values
0 missing
GGI8numeric248 unique values
0 missing
SPInumeric421 unique values
0 missing
SaasNnumeric47 unique values
0 missing
S0Knumeric155 unique values
0 missing
Eig13_AEA.bo.numeric247 unique values
0 missing
SM04_EA.bo.numeric330 unique values
0 missing
Eig03_EAnumeric267 unique values
0 missing
SM11_AEA.bo.numeric267 unique values
0 missing
SpMax1_Bh.e.numeric161 unique values
0 missing
Eta_Bnumeric216 unique values
0 missing
Eig03_AEA.ri.numeric295 unique values
0 missing
Eig03_AEA.ed.numeric233 unique values
0 missing
piPC02numeric128 unique values
0 missing
SM02_EA.bo.numeric128 unique values
0 missing
C.025numeric7 unique values
0 missing
Eig03_EA.ed.numeric280 unique values
0 missing
SM12_AEA.dm.numeric280 unique values
0 missing
TIC1numeric485 unique values
0 missing
ATSC2snumeric572 unique values
0 missing
Eta_alphanumeric322 unique values
0 missing
ATS2mnumeric349 unique values
0 missing
NaasNnumeric2 unique values
0 missing
SpMax8_Bh.s.numeric338 unique values
0 missing
ZM1Madnumeric497 unique values
0 missing
IVDEnumeric194 unique values
0 missing
SpMax2_Bh.m.numeric213 unique values
0 missing
ATS2snumeric397 unique values
0 missing
ATSC1snumeric528 unique values
0 missing
HDcpxnumeric108 unique values
0 missing
Eig02_EA.bo.numeric212 unique values
0 missing
SM12_AEA.ri.numeric212 unique values
0 missing
Chi0_EA.ri.numeric523 unique values
0 missing
X0numeric227 unique values
0 missing
SpMax3_Bh.i.numeric167 unique values
0 missing
IDMnumeric308 unique values
0 missing
ZM2Pernumeric555 unique values
0 missing
SpDiam_EA.bo.numeric186 unique values
0 missing
Chi0_AEA.bo.numeric324 unique values
0 missing
Chi0_AEA.dm.numeric324 unique values
0 missing
Chi0_AEA.ed.numeric324 unique values
0 missing
Chi0_AEA.ri.numeric324 unique values
0 missing
Chi0_EAnumeric324 unique values
0 missing
SM08_AEA.bo.numeric362 unique values
0 missing
S1Knumeric393 unique values
0 missing
IDMTnumeric424 unique values
0 missing
ATS8mnumeric427 unique values
0 missing
LPRSnumeric426 unique values
0 missing
SpMax6_Bh.s.numeric285 unique values
0 missing
MWnumeric442 unique values
0 missing
Psi_e_0numeric545 unique values
0 missing
BACnumeric71 unique values
0 missing
IVDMnumeric175 unique values
0 missing
SpMax3_Bh.v.numeric231 unique values
0 missing
IDDMnumeric124 unique values
0 missing

62 properties

636
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.33
Mean skewness among attributes of the numeric type.
4.86
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
114.33
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.08
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.53
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
17.76
Maximum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
23174.43
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.47
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
20.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.79
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.34
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.45
Third quartile of skewness among attributes of the numeric type.
6995.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.49
First quartile of kurtosis among attributes of the numeric type.
1.85
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.72
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.93
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
392.14
Mean of means among attributes of the numeric type.
-0.2
First quartile of skewness among attributes of the numeric type.
0.03
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task