Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5491

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5491

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5491 (TID: 100098), and it has 472 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric216 unique values
0 missing
molecule_id (row identifier)nominal472 unique values
0 missing
FCFP4_1024b45numeric2 unique values
0 missing
FCFP4_1024b767numeric2 unique values
0 missing
FCFP4_1024b996numeric2 unique values
0 missing
FCFP4_1024b79numeric2 unique values
0 missing
FCFP4_1024b213numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b882numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b822numeric2 unique values
0 missing
FCFP4_1024b13numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b631numeric2 unique values
0 missing
FCFP4_1024b301numeric2 unique values
0 missing
FCFP4_1024b504numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b961numeric2 unique values
0 missing
FCFP4_1024b884numeric2 unique values
0 missing
FCFP4_1024b235numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b187numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b804numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b597numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b322numeric2 unique values
0 missing
FCFP4_1024b746numeric2 unique values
0 missing
FCFP4_1024b949numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b392numeric2 unique values
0 missing
FCFP4_1024b1017numeric2 unique values
0 missing
FCFP4_1024b789numeric2 unique values
0 missing
FCFP4_1024b162numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b272numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b215numeric2 unique values
0 missing
FCFP4_1024b306numeric2 unique values
0 missing
FCFP4_1024b586numeric2 unique values
0 missing
FCFP4_1024b764numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b529numeric2 unique values
0 missing

62 properties

472
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
31.68
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
13.98
Third quartile of kurtosis among attributes of the numeric type.
6.05
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.47
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.46
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
3.97
Third quartile of skewness among attributes of the numeric type.
5.79
Maximum skewness among attributes of the numeric type.
0.16
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.5
Third quartile of standard deviation of attributes of the numeric type.
1.24
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.94
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.06
First quartile of means among attributes of the numeric type.
5.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.4
Mean of means among attributes of the numeric type.
0.11
First quartile of skewness among attributes of the numeric type.
0.18
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.11
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.9
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.73
Mean skewness among attributes of the numeric type.
0.27
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.4
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.05
Second quartile (Median) of skewness among attributes of the numeric type.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task