Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL283

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL283

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL283 (TID: 11109), and it has 1976 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric792 unique values
0 missing
molecule_id (row identifier)nominal1976 unique values
0 missing
CATS2D_01_DDnumeric2 unique values
0 missing
nRNHOnumeric3 unique values
0 missing
Eig01_AEA.bo.numeric449 unique values
0 missing
SpMax_AEA.bo.numeric449 unique values
0 missing
CATS2D_09_DAnumeric9 unique values
0 missing
P_VSA_MR_3numeric39 unique values
0 missing
SaaaCnumeric216 unique values
0 missing
SpDiam_EA.ed.numeric758 unique values
0 missing
nArCONHRnumeric3 unique values
0 missing
Eig01_AEA.dm.numeric400 unique values
0 missing
SpMax_AEA.dm.numeric400 unique values
0 missing
O.056numeric6 unique values
0 missing
SpMax1_Bh.m.numeric382 unique values
0 missing
X2Avnumeric152 unique values
0 missing
NaaaCnumeric4 unique values
0 missing
ATSC1inumeric738 unique values
0 missing
SpDiam_AEA.dm.numeric441 unique values
0 missing
ATSC4snumeric1867 unique values
0 missing
X2vnumeric1669 unique values
0 missing
TIC1numeric1741 unique values
0 missing
Eig01_EA.ed.numeric592 unique values
0 missing
SM10_AEA.dm.numeric592 unique values
0 missing
SpMax_EA.ed.numeric592 unique values
0 missing
PCDnumeric1145 unique values
0 missing
X4Avnumeric84 unique values
0 missing
SM09_EA.dm.numeric354 unique values
0 missing
IC2numeric940 unique values
0 missing
X3Avnumeric106 unique values
0 missing
ATSC2inumeric994 unique values
0 missing
SpMax5_Bh.i.numeric603 unique values
0 missing
SM15_EA.dm.numeric335 unique values
0 missing
CATS2D_08_DLnumeric19 unique values
0 missing
SpDiam_EA.bo.numeric451 unique values
0 missing
SpDiam_AEA.bo.numeric603 unique values
0 missing
MWnumeric1498 unique values
0 missing
SM15_EA.ed.numeric949 unique values
0 missing
C.028numeric3 unique values
0 missing
SpMax7_Bh.i.numeric621 unique values
0 missing
N.068numeric3 unique values
0 missing
ATSC4inumeric1162 unique values
0 missing
SPInumeric1474 unique values
0 missing
SM11_EA.dm.numeric351 unique values
0 missing
SM13_EA.dm.numeric333 unique values
0 missing
Eta_epsinumeric921 unique values
0 missing
SpMax7_Bh.e.numeric633 unique values
0 missing
ATS2inumeric842 unique values
0 missing
SpMax5_Bh.e.numeric610 unique values
0 missing
SpMin7_Bh.p.numeric593 unique values
0 missing
Eig01_AEA.ri.numeric480 unique values
0 missing
SpMax_AEA.ri.numeric480 unique values
0 missing
SpMin7_Bh.v.numeric586 unique values
0 missing
SpMax7_Bh.s.numeric715 unique values
0 missing
ATSC3pnumeric1712 unique values
0 missing
SpMin1_Bh.i.numeric276 unique values
0 missing
X1vnumeric1641 unique values
0 missing
SpMin7_Bh.i.numeric592 unique values
0 missing
SpMin7_Bh.e.numeric582 unique values
0 missing
SM13_EA.ed.numeric992 unique values
0 missing
SpMax5_Bh.p.numeric676 unique values
0 missing
SpMax3_Bh.p.numeric493 unique values
0 missing
SpMin5_Bh.p.numeric568 unique values
0 missing
SRW08numeric759 unique values
0 missing
HDcpxnumeric278 unique values
0 missing
SM02_AEA.ed.numeric227 unique values
0 missing
SM04_EAnumeric286 unique values
0 missing
X0numeric806 unique values
0 missing
Eig01_EAnumeric455 unique values
0 missing
SM09_AEA.bo.numeric455 unique values
0 missing
SpMax_EAnumeric455 unique values
0 missing
Eig03_AEA.dm.numeric614 unique values
0 missing

62 properties

1976
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
16.23
Maximum kurtosis among attributes of the numeric type.
0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
5.22
Third quartile of kurtosis among attributes of the numeric type.
457.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.38
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.32
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
0.54
Third quartile of skewness among attributes of the numeric type.
4.03
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.03
Third quartile of standard deviation of attributes of the numeric type.
94.77
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.22
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.41
First quartile of means among attributes of the numeric type.
3.14
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.9
Mean of means among attributes of the numeric type.
-1.16
First quartile of skewness among attributes of the numeric type.
-0.2
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.04
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.23
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.06
Mean skewness among attributes of the numeric type.
4.38
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.27
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.18
Second quartile (Median) of skewness among attributes of the numeric type.
0.5
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.97
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task