Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2821

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2821

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2821 (TID: 11288), and it has 665 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric38 unique values
0 missing
molecule_id (row identifier)nominal665 unique values
0 missing
SdssCnumeric507 unique values
0 missing
ALOGPnumeric618 unique values
0 missing
NdssCnumeric12 unique values
0 missing
Eig05_EA.dm.numeric119 unique values
0 missing
CATS2D_08_AAnumeric12 unique values
0 missing
CATS2D_08_APnumeric7 unique values
0 missing
Eig04_AEA.dm.numeric515 unique values
0 missing
Eig11_EA.dm.numeric13 unique values
0 missing
Eig13_EA.dm.numeric23 unique values
0 missing
nPyrrolidinesnumeric4 unique values
0 missing
NssNHnumeric10 unique values
0 missing
SpMin8_Bh.e.numeric411 unique values
0 missing
SpMin8_Bh.i.numeric397 unique values
0 missing
SssNHnumeric363 unique values
0 missing
Eig08_EA.dm.numeric23 unique values
0 missing
ATS8mnumeric571 unique values
0 missing
P_VSA_LogP_2numeric347 unique values
0 missing
CATS2D_05_AAnumeric14 unique values
0 missing
Chi1_EA.dm.numeric652 unique values
0 missing
Eig07_AEA.dm.numeric525 unique values
0 missing
GGI4numeric482 unique values
0 missing
P_VSA_p_3numeric656 unique values
0 missing
P_VSA_v_3numeric656 unique values
0 missing
piPC03numeric447 unique values
0 missing
SpMax5_Bh.m.numeric448 unique values
0 missing
SpMin6_Bh.s.numeric376 unique values
0 missing
Wapnumeric638 unique values
0 missing
MPC06numeric156 unique values
0 missing
MWC10numeric520 unique values
0 missing
MWC08numeric521 unique values
0 missing
X4vnumeric614 unique values
0 missing
X5vnumeric606 unique values
0 missing
Hynumeric335 unique values
0 missing
P_VSA_MR_5numeric608 unique values
0 missing
Uindexnumeric652 unique values
0 missing
P_VSA_MR_2numeric272 unique values
0 missing
ATS7pnumeric561 unique values
0 missing
ATS7vnumeric558 unique values
0 missing
ATS8vnumeric558 unique values
0 missing
ATSC7inumeric546 unique values
0 missing
ATSC7pnumeric644 unique values
0 missing
ATSC7vnumeric650 unique values
0 missing
ATSC8inumeric546 unique values
0 missing
CATS2D_09_DAnumeric14 unique values
0 missing
MDDDnumeric628 unique values
0 missing
nC..N.N2numeric3 unique values
0 missing
nHAccnumeric22 unique values
0 missing
nHetnumeric23 unique values
0 missing
nNnumeric15 unique values
0 missing
P_VSA_s_5numeric40 unique values
0 missing
SMTInumeric646 unique values
0 missing
SpMaxA_EA.ri.numeric131 unique values
0 missing
SpMin8_Bh.p.numeric423 unique values
0 missing
ZM2MulPernumeric662 unique values
0 missing
ZM2Pernumeric659 unique values
0 missing
ZM2Vnumeric327 unique values
0 missing
ATSC7mnumeric658 unique values
0 missing
CATS2D_07_DDnumeric8 unique values
0 missing
MPC05numeric141 unique values
0 missing
ATS1vnumeric474 unique values
0 missing
ATS2inumeric494 unique values
0 missing
ATS2vnumeric485 unique values
0 missing
ATS3enumeric518 unique values
0 missing
ATS3mnumeric505 unique values
0 missing
ATS3pnumeric511 unique values
0 missing
ATS3vnumeric516 unique values
0 missing
ATS4inumeric524 unique values
0 missing
ATS4mnumeric516 unique values
0 missing
ATS4pnumeric530 unique values
0 missing
ATS4vnumeric523 unique values
0 missing

62 properties

665
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
17.15
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
4.81
Third quartile of skewness among attributes of the numeric type.
215569.61
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.02
First quartile of kurtosis among attributes of the numeric type.
4.83
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.99
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
22.9
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
630.34
Mean of means among attributes of the numeric type.
0.47
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.37
First quartile of standard deviation of attributes of the numeric type.
0.96
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
12.75
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
2.88
Mean skewness among attributes of the numeric type.
3.55
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
3601.68
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.53
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
306.76
Maximum kurtosis among attributes of the numeric type.
-0.57
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
29833.57
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
30.62
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
10.03
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.22
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task