Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL257

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL257

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL257 (TID: 10026), and it has 621 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric321 unique values
0 missing
molecule_id (row identifier)nominal621 unique values
0 missing
FCFP4_1024b873numeric2 unique values
0 missing
FCFP4_1024b209numeric2 unique values
0 missing
FCFP4_1024b992numeric2 unique values
0 missing
FCFP4_1024b746numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b283numeric2 unique values
0 missing
FCFP4_1024b713numeric2 unique values
0 missing
FCFP4_1024b45numeric2 unique values
0 missing
FCFP4_1024b375numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b504numeric2 unique values
0 missing
FCFP4_1024b701numeric2 unique values
0 missing
FCFP4_1024b645numeric2 unique values
0 missing
FCFP4_1024b185numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b678numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b133numeric2 unique values
0 missing
FCFP4_1024b56numeric2 unique values
0 missing
FCFP4_1024b569numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b263numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b859numeric2 unique values
0 missing
FCFP4_1024b702numeric2 unique values
0 missing
FCFP4_1024b970numeric2 unique values
0 missing
FCFP4_1024b898numeric2 unique values
0 missing
FCFP4_1024b420numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b876numeric2 unique values
0 missing
FCFP4_1024b171numeric2 unique values
0 missing
FCFP4_1024b367numeric2 unique values
0 missing
FCFP4_1024b676numeric2 unique values
0 missing
FCFP4_1024b582numeric2 unique values
0 missing
FCFP4_1024b967numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b120numeric2 unique values
0 missing
FCFP4_1024b357numeric2 unique values
0 missing
FCFP4_1024b409numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b294numeric2 unique values
0 missing

62 properties

621
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
5.04
Maximum skewness among attributes of the numeric type.
0.19
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.72
Third quartile of skewness among attributes of the numeric type.
1.55
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.93
First quartile of kurtosis among attributes of the numeric type.
0.5
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.18
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.51
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.45
Mean of means among attributes of the numeric type.
-0.01
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.34
First quartile of standard deviation of attributes of the numeric type.
-0.23
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.75
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Number of attributes divided by the number of instances.
1.17
Mean skewness among attributes of the numeric type.
0.29
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.43
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.96
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
23.46
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.73
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.51
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.69
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task