Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL259

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL259

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL259 (TID: 10142), and it has 2872 rows and 71 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

73 features

pXC50 (target)numeric1057 unique values
0 missing
molecule_id (row identifier)nominal2872 unique values
0 missing
CMC.80numeric2 unique values
0 missing
Infective.80numeric2 unique values
0 missing
Neoplastic.80numeric2 unique values
0 missing
Psychotic.80numeric2 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
VvdwZAZnumeric2054 unique values
0 missing
Inflammat.80numeric2 unique values
0 missing
SpMax4_Bh.i.numeric549 unique values
0 missing
Eig14_EAnumeric1092 unique values
0 missing
SM08_AEA.dm.numeric1092 unique values
0 missing
Eig12_AEA.dm.numeric1067 unique values
0 missing
Eta_Lnumeric2279 unique values
0 missing
Eig06_EA.dm.numeric233 unique values
0 missing
Eig12_EA.ri.numeric1091 unique values
0 missing
P_VSA_p_1numeric247 unique values
0 missing
Eig12_AEA.ri.numeric1107 unique values
0 missing
ATSC1pnumeric1933 unique values
0 missing
ATS2enumeric1102 unique values
0 missing
ATS2inumeric1116 unique values
0 missing
nCsp3numeric65 unique values
0 missing
Eig10_EA.ri.numeric1073 unique values
0 missing
SpMaxA_EA.ri.numeric146 unique values
0 missing
DLS_05numeric3 unique values
0 missing
SpMaxA_AEA.ed.numeric280 unique values
0 missing
ATS1enumeric1061 unique values
0 missing
DLS_01numeric4 unique values
0 missing
X1Kupnumeric2305 unique values
0 missing
VvdwMGnumeric1935 unique values
0 missing
Vxnumeric1935 unique values
0 missing
Svnumeric2010 unique values
0 missing
X1Pernumeric2259 unique values
0 missing
X0vnumeric2224 unique values
0 missing
ATSC6mnumeric2596 unique values
0 missing
X1MulPernumeric2260 unique values
0 missing
S1Knumeric1747 unique values
0 missing
Mvnumeric196 unique values
0 missing
Eig11_EAnumeric992 unique values
0 missing
SM05_AEA.dm.numeric992 unique values
0 missing
ATSC8inumeric1982 unique values
0 missing
ATSC7mnumeric2614 unique values
0 missing
X1vnumeric2274 unique values
0 missing
ATSC6vnumeric2557 unique values
0 missing
ATSC8mnumeric2600 unique values
0 missing
H.numeric245 unique values
0 missing
X3vnumeric2274 unique values
0 missing
ATSC4mnumeric2578 unique values
0 missing
ATSC7vnumeric2556 unique values
0 missing
ATSC6pnumeric2507 unique values
0 missing
ATSC5mnumeric2592 unique values
0 missing
LLS_02numeric7 unique values
0 missing
SM02_AEA.bo.numeric778 unique values
0 missing
DLS_02numeric7 unique values
0 missing
ATS7inumeric1415 unique values
0 missing
ATS6inumeric1325 unique values
0 missing
P_VSA_e_3numeric451 unique values
0 missing
Eta_C_Anumeric915 unique values
0 missing
ATS6enumeric1350 unique values
0 missing
ATS7enumeric1415 unique values
0 missing
ATS5mnumeric1274 unique values
0 missing
P_VSA_MR_1numeric184 unique values
0 missing
ATSC7pnumeric2501 unique values
0 missing
SpMin4_Bh.m.numeric484 unique values
0 missing
ATSC3mnumeric2496 unique values
0 missing
Chi0_EA.bo.numeric2027 unique values
0 missing
ATSC5vnumeric2560 unique values
0 missing
ATSC4pnumeric2456 unique values
0 missing
ATS5pnumeric1245 unique values
0 missing
ATS8inumeric1486 unique values
0 missing
ATS6pnumeric1303 unique values
0 missing
C.008numeric21 unique values
0 missing
ATSC6inumeric1898 unique values
0 missing

62 properties

2872
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
5.27
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.98
Third quartile of skewness among attributes of the numeric type.
421.96
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.74
First quartile of kurtosis among attributes of the numeric type.
14.43
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.27
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
17.17
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
49.28
Mean of means among attributes of the numeric type.
-0.2
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.39
First quartile of standard deviation of attributes of the numeric type.
-0.05
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.75
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.03
Number of attributes divided by the number of instances.
2.04
Mean skewness among attributes of the numeric type.
5.48
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
25.97
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.1
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.05
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.71
Second quartile (Median) of standard deviation of attributes of the numeric type.
49.87
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
796.69
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
33.19
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.63
Percentage of numeric attributes.
28.7
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.97
Minimum skewness among attributes of the numeric type.
1.37
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task