Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4816

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4816

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4816 (TID: 10696), and it has 1070 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric185 unique values
0 missing
molecule_id (row identifier)nominal1070 unique values
0 missing
FCFP4_1024b583numeric2 unique values
0 missing
FCFP4_1024b455numeric2 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b42numeric2 unique values
0 missing
FCFP4_1024b218numeric2 unique values
0 missing
FCFP4_1024b714numeric2 unique values
0 missing
FCFP4_1024b374numeric2 unique values
0 missing
FCFP4_1024b268numeric2 unique values
0 missing
FCFP4_1024b532numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b265numeric2 unique values
0 missing
FCFP4_1024b697numeric2 unique values
0 missing
FCFP4_1024b549numeric2 unique values
0 missing
FCFP4_1024b848numeric2 unique values
0 missing
FCFP4_1024b997numeric2 unique values
0 missing
FCFP4_1024b525numeric2 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b879numeric2 unique values
0 missing
FCFP4_1024b192numeric2 unique values
0 missing
FCFP4_1024b687numeric2 unique values
0 missing
FCFP4_1024b860numeric2 unique values
0 missing
FCFP4_1024b345numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b727numeric2 unique values
0 missing
FCFP4_1024b349numeric2 unique values
0 missing
FCFP4_1024b59numeric2 unique values
0 missing
FCFP4_1024b820numeric2 unique values
0 missing
FCFP4_1024b297numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b667numeric2 unique values
0 missing
FCFP4_1024b910numeric2 unique values
0 missing
FCFP4_1024b539numeric2 unique values
0 missing
FCFP4_1024b573numeric2 unique values
0 missing
FCFP4_1024b563numeric2 unique values
0 missing
FCFP4_1024b102numeric2 unique values
0 missing
FCFP4_1024b898numeric2 unique values
0 missing
FCFP4_1024b151numeric2 unique values
0 missing
FCFP4_1024b199numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b114numeric2 unique values
0 missing
FCFP4_1024b248numeric2 unique values
0 missing
FCFP4_1024b752numeric2 unique values
0 missing
FCFP4_1024b748numeric2 unique values
0 missing
FCFP4_1024b952numeric2 unique values
0 missing
FCFP4_1024b316numeric2 unique values
0 missing
FCFP4_1024b451numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b25numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b130numeric2 unique values
0 missing
FCFP4_1024b407numeric2 unique values
0 missing
FCFP4_1024b511numeric2 unique values
0 missing
FCFP4_1024b393numeric2 unique values
0 missing
FCFP4_1024b46numeric2 unique values
0 missing
FCFP4_1024b390numeric2 unique values
0 missing
FCFP4_1024b793numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b821numeric2 unique values
0 missing
FCFP4_1024b409numeric2 unique values
0 missing
FCFP4_1024b22numeric2 unique values
0 missing
FCFP4_1024b676numeric2 unique values
0 missing
FCFP4_1024b133numeric2 unique values
0 missing
FCFP4_1024b495numeric2 unique values
0 missing
FCFP4_1024b400numeric2 unique values
0 missing
FCFP4_1024b446numeric2 unique values
0 missing
FCFP4_1024b643numeric2 unique values
0 missing
FCFP4_1024b482numeric2 unique values
0 missing
FCFP4_1024b4numeric2 unique values
0 missing
FCFP4_1024b438numeric2 unique values
0 missing
FCFP4_1024b245numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric2 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric2 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric2 unique values
0 missing
FCFP4_1024b1012numeric2 unique values
0 missing
FCFP4_1024b1013numeric2 unique values
0 missing
FCFP4_1024b1014numeric2 unique values
0 missing
FCFP4_1024b1015numeric2 unique values
0 missing
FCFP4_1024b1016numeric2 unique values
0 missing
FCFP4_1024b1017numeric2 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b1019numeric2 unique values
0 missing
FCFP4_1024b1020numeric2 unique values
0 missing
FCFP4_1024b1021numeric2 unique values
0 missing
FCFP4_1024b1022numeric2 unique values
0 missing
FCFP4_1024b1023numeric2 unique values
0 missing
FCFP4_1024b1024numeric2 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b104numeric2 unique values
0 missing
FCFP4_1024b105numeric2 unique values
0 missing

62 properties

1070
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
20.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5.9
Mean skewness among attributes of the numeric type.
0.04
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.23
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
4.63
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.2
Second quartile (Median) of standard deviation of attributes of the numeric type.
1070
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
5.41
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
38.01
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.09
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.43
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
32.71
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.32
Third quartile of skewness among attributes of the numeric type.
1.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
7.02
First quartile of kurtosis among attributes of the numeric type.
0.28
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.02
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
68.2
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.15
Mean of means among attributes of the numeric type.
2.98
First quartile of skewness among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task