Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3927

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3927

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3927 (TID: 20012), and it has 78 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric58 unique values
0 missing
molecule_id (row identifier)nominal78 unique values
0 missing
nArCOORnumeric2 unique values
0 missing
MATS1vnumeric59 unique values
0 missing
SpMAD_AEA.dm.numeric64 unique values
0 missing
C.027numeric3 unique values
0 missing
H.049numeric4 unique values
0 missing
MATS1pnumeric63 unique values
0 missing
SM05_EAnumeric42 unique values
0 missing
Eig01_AEA.dm.numeric49 unique values
0 missing
SpDiam_AEA.dm.numeric49 unique values
0 missing
SpMax_AEA.dm.numeric49 unique values
0 missing
ATSC4inumeric77 unique values
0 missing
ATSC5inumeric74 unique values
0 missing
ATSC5pnumeric78 unique values
0 missing
Eig02_AEA.dm.numeric63 unique values
0 missing
SpMAD_AEA.ri.numeric61 unique values
0 missing
Eig02_AEA.ed.numeric61 unique values
0 missing
SM08_AEA.bo.numeric69 unique values
0 missing
SM09_EA.bo.numeric70 unique values
0 missing
SM11_EA.bo.numeric71 unique values
0 missing
SM12_EA.bo.numeric72 unique values
0 missing
ATSC1inumeric72 unique values
0 missing
ATSC1pnumeric75 unique values
0 missing
SM06_EAnumeric66 unique values
0 missing
CATS2D_07_DDnumeric2 unique values
0 missing
CIC4numeric65 unique values
0 missing
CIC5numeric65 unique values
0 missing
SIC4numeric54 unique values
0 missing
SIC5numeric55 unique values
0 missing
SpMax3_Bh.s.numeric46 unique values
0 missing
SpMin4_Bh.v.numeric67 unique values
0 missing
ATSC5mnumeric78 unique values
0 missing
Eig04_AEA.dm.numeric65 unique values
0 missing
Eig04_AEA.ed.numeric63 unique values
0 missing
MWC10numeric68 unique values
0 missing
nPyridinesnumeric2 unique values
0 missing
GATS1enumeric72 unique values
0 missing
TIEnumeric78 unique values
0 missing
SM03_EA.ed.numeric60 unique values
0 missing
SM04_AEA.ed.numeric68 unique values
0 missing
SM04_EA.ed.numeric69 unique values
0 missing
SM05_EA.ed.numeric68 unique values
0 missing
SM07_AEA.ed.numeric66 unique values
0 missing
SM07_EAnumeric65 unique values
0 missing
SM07_EA.ed.numeric67 unique values
0 missing
SM08_AEA.ed.numeric66 unique values
0 missing
SM08_EAnumeric69 unique values
0 missing
SM08_EA.ed.numeric69 unique values
0 missing
SM09_AEA.ed.numeric70 unique values
0 missing
SM09_EAnumeric68 unique values
0 missing
SM09_EA.ed.numeric67 unique values
0 missing
SM10_EAnumeric65 unique values
0 missing
SM10_EA.ed.numeric68 unique values
0 missing
SM11_EAnumeric68 unique values
0 missing
SM11_EA.ed.numeric68 unique values
0 missing
SM12_EAnumeric70 unique values
0 missing
SM13_EAnumeric69 unique values
0 missing
SM14_EAnumeric70 unique values
0 missing
ATS4snumeric78 unique values
0 missing
MWC09numeric68 unique values
0 missing
SM06_EA.ed.numeric69 unique values
0 missing
SM10_AEA.ed.numeric66 unique values
0 missing
SM11_AEA.ed.numeric70 unique values
0 missing
SM12_AEA.ed.numeric68 unique values
0 missing

62 properties

78
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
3.24
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.91
Third quartile of skewness among attributes of the numeric type.
53.22
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.32
First quartile of kurtosis among attributes of the numeric type.
0.82
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.52
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.9
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.06
Mean of means among attributes of the numeric type.
-0.72
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.27
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.44
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.83
Number of attributes divided by the number of instances.
-0.01
Mean skewness among attributes of the numeric type.
7.99
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.64
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.41
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.85
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
8.71
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
67.29
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.47
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
15.56
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.65
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task