Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1926

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1926

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1926 (TID: 10460), and it has 580 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric360 unique values
0 missing
molecule_id (row identifier)nominal580 unique values
0 missing
C.043numeric3 unique values
0 missing
SRW09numeric18 unique values
0 missing
SpMin1_Bh.v.numeric159 unique values
0 missing
SpMin1_Bh.e.numeric165 unique values
0 missing
D.Dtr09numeric82 unique values
0 missing
SpMin1_Bh.i.numeric148 unique values
0 missing
SpMin1_Bh.p.numeric136 unique values
0 missing
nR09numeric4 unique values
0 missing
SRW07numeric10 unique values
0 missing
SpMin2_Bh.s.numeric215 unique values
0 missing
nR05numeric3 unique values
0 missing
SRW05numeric4 unique values
0 missing
nArNR2numeric2 unique values
0 missing
SpMin2_Bh.m.numeric202 unique values
0 missing
Eig03_AEA.bo.numeric291 unique values
0 missing
DECCnumeric268 unique values
0 missing
SpMin3_Bh.m.numeric259 unique values
0 missing
CATS2D_06_LLnumeric17 unique values
0 missing
D.Dtr06numeric386 unique values
0 missing
Eig05_AEA.bo.numeric216 unique values
0 missing
SpMax3_Bh.e.numeric275 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
SaaNHnumeric41 unique values
0 missing
SpMax5_Bh.v.numeric290 unique values
0 missing
SM03_EA.dm.numeric26 unique values
0 missing
SM05_EA.dm.numeric41 unique values
0 missing
SM07_EA.dm.numeric41 unique values
0 missing
SM09_EA.dm.numeric38 unique values
0 missing
SM11_EA.dm.numeric37 unique values
0 missing
SM13_EA.dm.numeric37 unique values
0 missing
SM15_EA.dm.numeric36 unique values
0 missing
SpMax5_Bh.p.numeric280 unique values
0 missing
Eig05_AEA.dm.numeric302 unique values
0 missing
N.071numeric2 unique values
0 missing
ATSC4inumeric433 unique values
0 missing
SpMin1_Bh.m.numeric178 unique values
0 missing
SpMin3_Bh.s.numeric288 unique values
0 missing
ICRnumeric229 unique values
0 missing
SpMax6_Bh.v.numeric281 unique values
0 missing
SpMax6_Bh.p.numeric287 unique values
0 missing
ATS4pnumeric420 unique values
0 missing
CATS2D_04_DDnumeric5 unique values
0 missing
Eig01_EA.bo.numeric105 unique values
0 missing
SM11_AEA.ri.numeric105 unique values
0 missing
SpDiam_EA.bo.numeric106 unique values
0 missing
SpMax_EA.bo.numeric105 unique values
0 missing
TIC4numeric371 unique values
0 missing
SpMax3_Bh.i.numeric271 unique values
0 missing
ATSC5inumeric461 unique values
0 missing
Eig03_EAnumeric273 unique values
0 missing
SM11_AEA.bo.numeric273 unique values
0 missing
ATS4enumeric417 unique values
0 missing
SpMin2_Bh.v.numeric173 unique values
0 missing
CIC0numeric303 unique values
0 missing
SpMax6_Bh.m.numeric253 unique values
0 missing
nCsp2numeric17 unique values
0 missing
ATS4vnumeric406 unique values
0 missing
ATS3pnumeric363 unique values
0 missing
D.Dtr05numeric98 unique values
0 missing
ATS5inumeric430 unique values
0 missing
ATS3vnumeric370 unique values
0 missing
SpMax3_Bh.v.numeric292 unique values
0 missing
Eig12_AEA.ed.numeric282 unique values
0 missing
ATS5enumeric434 unique values
0 missing
Eig03_EA.ed.numeric342 unique values
0 missing
SM12_AEA.dm.numeric342 unique values
0 missing
CATS2D_04_DLnumeric13 unique values
0 missing

62 properties

580
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
3.09
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.49
Third quartile of skewness among attributes of the numeric type.
70.33
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.04
First quartile of kurtosis among attributes of the numeric type.
0.98
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.33
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.09
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.31
Mean of means among attributes of the numeric type.
-0.11
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.
-0.11
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.74
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.12
Number of attributes divided by the number of instances.
0.62
Mean skewness among attributes of the numeric type.
2.63
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
3.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.37
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.21
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.28
Second quartile (Median) of standard deviation of attributes of the numeric type.
16.81
Maximum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
214.88
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.07
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
3.9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.14
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task