Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3252

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3252

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3252 (TID: 10728), and it has 172 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric127 unique values
0 missing
molecule_id (row identifier)nominal172 unique values
0 missing
SpMin7_Bh.m.numeric107 unique values
0 missing
MATS4inumeric115 unique values
0 missing
SpMin6_Bh.v.numeric92 unique values
0 missing
SpMin7_Bh.s.numeric76 unique values
0 missing
SpMin7_Bh.v.numeric99 unique values
0 missing
MATS1pnumeric99 unique values
0 missing
GATS4inumeric125 unique values
0 missing
SpMin8_Bh.s.numeric72 unique values
0 missing
GATS4pnumeric121 unique values
0 missing
MATS4pnumeric113 unique values
0 missing
SpMin8_Bh.e.numeric97 unique values
0 missing
P_VSA_LogP_4numeric33 unique values
0 missing
O.057numeric4 unique values
0 missing
SpMin8_Bh.m.numeric107 unique values
0 missing
O.060numeric5 unique values
0 missing
CATS2D_03_DLnumeric16 unique values
0 missing
SpMin7_Bh.e.numeric97 unique values
0 missing
CATS2D_04_DAnumeric3 unique values
0 missing
SpMin8_Bh.v.numeric111 unique values
0 missing
nArOHnumeric4 unique values
0 missing
JGI3numeric51 unique values
0 missing
nArORnumeric5 unique values
0 missing
SpMin3_Bh.s.numeric104 unique values
0 missing
Eta_Lnumeric131 unique values
0 missing
ATSC2mnumeric115 unique values
0 missing
DBInumeric38 unique values
0 missing
CATS2D_04_DLnumeric15 unique values
0 missing
SpMin8_Bh.p.numeric109 unique values
0 missing
GATS3snumeric126 unique values
0 missing
Eig02_EA.dm.numeric24 unique values
0 missing
SpAD_EA.dm.numeric59 unique values
0 missing
MATS1enumeric90 unique values
0 missing
SpMin6_Bh.m.numeric94 unique values
0 missing
MATS5enumeric116 unique values
0 missing
SpMax4_Bh.i.numeric122 unique values
0 missing
SpMax3_Bh.i.numeric98 unique values
0 missing
MATS1mnumeric85 unique values
0 missing
SpMax4_Bh.p.numeric106 unique values
0 missing
SpMax3_Bh.m.numeric112 unique values
0 missing
SssOnumeric84 unique values
0 missing
GATS4vnumeric120 unique values
0 missing
IACnumeric104 unique values
0 missing
TIC0numeric104 unique values
0 missing
MATS1vnumeric86 unique values
0 missing
ATS2inumeric107 unique values
0 missing
SpMax4_Bh.v.numeric112 unique values
0 missing
ATSC1inumeric103 unique values
0 missing
CATS2D_09_ALnumeric7 unique values
0 missing
GATS2mnumeric103 unique values
0 missing
CATS2D_03_DAnumeric4 unique values
0 missing
MATS1snumeric106 unique values
0 missing
DECCnumeric112 unique values
0 missing
SpMax4_Bh.m.numeric118 unique values
0 missing
SpMax4_Bh.e.numeric118 unique values
0 missing
P_VSA_e_1numeric31 unique values
0 missing
P_VSA_m_1numeric31 unique values
0 missing
P_VSA_p_1numeric42 unique values
0 missing
P_VSA_s_2numeric33 unique values
0 missing
P_VSA_v_1numeric31 unique values
0 missing
SpMin6_Bh.p.numeric95 unique values
0 missing
MATS4snumeric112 unique values
0 missing
Eig05_AEA.dm.numeric117 unique values
0 missing
SM02_EA.dm.numeric58 unique values
0 missing
GATS1inumeric101 unique values
0 missing

62 properties

172
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
1.81
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.47
Third quartile of skewness among attributes of the numeric type.
86
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.62
First quartile of kurtosis among attributes of the numeric type.
1.21
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.69
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.06
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
22.35
Mean of means among attributes of the numeric type.
-0.63
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.
-0.25
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.38
Number of attributes divided by the number of instances.
-0.01
Mean skewness among attributes of the numeric type.
1.16
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
8.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.02
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.63
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
3.47
Maximum kurtosis among attributes of the numeric type.
-0.13
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
231.82
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.25
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
3.6
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.91
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task