Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2563

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2563

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2563 (TID: 12283), and it has 157 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric94 unique values
0 missing
molecule_id (row identifier)nominal157 unique values
0 missing
CATS2D_01_DDnumeric3 unique values
0 missing
nRNHOnumeric3 unique values
0 missing
O.056numeric3 unique values
0 missing
P_VSA_MR_3numeric11 unique values
0 missing
GATS5mnumeric139 unique values
0 missing
MATS3snumeric125 unique values
0 missing
MATS5mnumeric131 unique values
0 missing
CATS2D_03_DAnumeric6 unique values
0 missing
MAXDNnumeric126 unique values
0 missing
GATS4snumeric135 unique values
0 missing
MATS2enumeric114 unique values
0 missing
P_VSA_LogP_3numeric61 unique values
0 missing
H.051numeric10 unique values
0 missing
MATS1enumeric112 unique values
0 missing
GATS3snumeric137 unique values
0 missing
MATS5vnumeric121 unique values
0 missing
nRSRnumeric2 unique values
0 missing
NssSnumeric2 unique values
0 missing
SssSnumeric25 unique values
0 missing
ATSC3snumeric152 unique values
0 missing
MATS3enumeric117 unique values
0 missing
GATS7mnumeric128 unique values
0 missing
S.107numeric3 unique values
0 missing
MATS1snumeric100 unique values
0 missing
CATS2D_03_ALnumeric14 unique values
0 missing
P_VSA_MR_8numeric7 unique values
0 missing
P_VSA_i_1numeric8 unique values
0 missing
CATS2D_04_DAnumeric4 unique values
0 missing
nROHnumeric3 unique values
0 missing
SsOHnumeric114 unique values
0 missing
GATS2enumeric123 unique values
0 missing
GATS7vnumeric133 unique values
0 missing
GATS5pnumeric132 unique values
0 missing
SM04_EA.dm.numeric89 unique values
0 missing
Eig01_AEA.dm.numeric54 unique values
0 missing
SpMax_AEA.dm.numeric54 unique values
0 missing
SM12_EA.dm.numeric64 unique values
0 missing
SM14_EA.dm.numeric60 unique values
0 missing
P_VSA_LogP_4numeric58 unique values
0 missing
SaasNnumeric15 unique values
0 missing
SdssCnumeric139 unique values
0 missing
GATS6snumeric142 unique values
0 missing
GATS3enumeric137 unique values
0 missing
SpDiam_AEA.dm.numeric55 unique values
0 missing
CATS2D_03_DDnumeric4 unique values
0 missing
P_VSA_MR_6numeric121 unique values
0 missing
Eig01_EA.dm.numeric35 unique values
0 missing
SpMax_EA.dm.numeric35 unique values
0 missing
MATS8enumeric136 unique values
0 missing
MATS7vnumeric123 unique values
0 missing
GATS5snumeric141 unique values
0 missing
GATS7pnumeric127 unique values
0 missing
O.057numeric4 unique values
0 missing
Eig03_AEA.dm.numeric90 unique values
0 missing
nArOHnumeric4 unique values
0 missing
SM06_EA.dm.numeric84 unique values
0 missing
SM08_EA.dm.numeric78 unique values
0 missing
SM10_EA.dm.numeric70 unique values
0 missing
SpMaxA_EA.dm.numeric72 unique values
0 missing
CATS2D_07_PLnumeric5 unique values
0 missing
SdsCHnumeric32 unique values
0 missing
C.016numeric5 unique values
0 missing
NdsCHnumeric5 unique values
0 missing
nR.Csnumeric5 unique values
0 missing
CATS2D_06_PLnumeric5 unique values
0 missing
CATS2D_06_DLnumeric14 unique values
0 missing

62 properties

157
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
4.59
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.63
Third quartile of skewness among attributes of the numeric type.
42.32
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.03
First quartile of kurtosis among attributes of the numeric type.
1.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.21
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.62
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.22
Mean of means among attributes of the numeric type.
-0.03
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.
0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.43
Number of attributes divided by the number of instances.
0.8
Mean skewness among attributes of the numeric type.
0.93
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.02
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.83
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.64
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.55
Second quartile (Median) of standard deviation of attributes of the numeric type.
25.92
Maximum kurtosis among attributes of the numeric type.
-0.53
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
96.67
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.85
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
4.05
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.03
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task