Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3594

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3594

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3594 (TID: 12952), and it has 1492 rows and 71 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

73 features

pXC50 (target)numeric719 unique values
0 missing
molecule_id (row identifier)nominal1492 unique values
0 missing
CATS2D_02_APnumeric8 unique values
0 missing
N.069numeric4 unique values
0 missing
CATS2D_00_DDnumeric4 unique values
0 missing
CATS2D_00_DPnumeric4 unique values
0 missing
CATS2D_00_PPnumeric4 unique values
0 missing
NsNH2numeric4 unique values
0 missing
CATS2D_04_PLnumeric12 unique values
0 missing
SM08_EA.bo.numeric842 unique values
0 missing
ATSC2snumeric1386 unique values
0 missing
SM06_EA.bo.numeric865 unique values
0 missing
SM08_AEA.bo.numeric842 unique values
0 missing
SM07_AEA.bo.numeric868 unique values
0 missing
SpMax3_Bh.e.numeric644 unique values
0 missing
ATS1mnumeric813 unique values
0 missing
SpMax3_Bh.p.numeric669 unique values
0 missing
SM06_AEA.bo.numeric839 unique values
0 missing
SM07_EAnumeric663 unique values
0 missing
SM08_EAnumeric858 unique values
0 missing
SsNH2numeric640 unique values
0 missing
ZM2Madnumeric1316 unique values
0 missing
MATS2snumeric534 unique values
0 missing
BLInumeric529 unique values
0 missing
X1Avnumeric247 unique values
0 missing
SM05_EAnumeric175 unique values
0 missing
SpMax3_Bh.v.numeric661 unique values
0 missing
SpMax3_Bh.i.numeric628 unique values
0 missing
SM09_EAnumeric846 unique values
0 missing
SM10_EAnumeric867 unique values
0 missing
SpMax5_Bh.s.numeric598 unique values
0 missing
SM12_EAnumeric916 unique values
0 missing
S.110numeric5 unique values
0 missing
P_VSA_s_1numeric23 unique values
0 missing
NddssSnumeric5 unique values
0 missing
SpMin3_Bh.v.numeric574 unique values
0 missing
Eig03_EA.bo.numeric707 unique values
0 missing
SM13_AEA.ri.numeric707 unique values
0 missing
MATS1mnumeric402 unique values
0 missing
Eig03_AEA.bo.numeric693 unique values
0 missing
P_VSA_MR_6numeric789 unique values
0 missing
GGI1numeric40 unique values
0 missing
SpMin3_Bh.i.numeric613 unique values
0 missing
SM03_EAnumeric34 unique values
0 missing
SpMax1_Bh.p.numeric365 unique values
0 missing
SpMax1_Bh.s.numeric128 unique values
0 missing
CATS2D_03_PLnumeric11 unique values
0 missing
piPC02numeric336 unique values
0 missing
SM02_EA.bo.numeric336 unique values
0 missing
X2Avnumeric196 unique values
0 missing
nSnumeric7 unique values
0 missing
SM13_EA.bo.numeric815 unique values
0 missing
SM14_EA.bo.numeric813 unique values
0 missing
SM15_EA.bo.numeric786 unique values
0 missing
GGI10numeric216 unique values
0 missing
SM12_EA.bo.numeric831 unique values
0 missing
SM11_EA.bo.numeric813 unique values
0 missing
ATSC2enumeric736 unique values
0 missing
piPC01numeric135 unique values
0 missing
SCBOnumeric135 unique values
0 missing
SM09_EA.bo.numeric822 unique values
0 missing
SpMax6_Bh.s.numeric682 unique values
0 missing
SM10_EA.bo.numeric857 unique values
0 missing
SM06_AEA.ed.numeric865 unique values
0 missing
SM07_AEA.ed.numeric866 unique values
0 missing
SM04_EA.ed.numeric908 unique values
0 missing
SpAD_EA.bo.numeric1210 unique values
0 missing
ATSC1snumeric1308 unique values
0 missing
SpMax7_Bh.s.numeric805 unique values
0 missing
AACnumeric593 unique values
0 missing
IC0numeric593 unique values
0 missing
Eta_betanumeric230 unique values
0 missing
GGI9numeric381 unique values
0 missing

62 properties

1492
Number of instances (rows) of the dataset.
73
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
72
Number of numeric attributes.
1
Number of nominal attributes.
3.18
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.46
Third quartile of skewness among attributes of the numeric type.
109.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.44
First quartile of kurtosis among attributes of the numeric type.
1.47
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.49
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
14.09
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.24
Mean of means among attributes of the numeric type.
-3.39
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.46
First quartile of standard deviation of attributes of the numeric type.
0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
7.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.05
Number of attributes divided by the number of instances.
-1.31
Mean skewness among attributes of the numeric type.
4.49
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.57
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
52.57
Maximum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
212.27
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
25.89
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.63
Percentage of numeric attributes.
12.44
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-6.3
Minimum skewness among attributes of the numeric type.
1.37
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task