Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5113

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5113

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5113 (TID: 10009), and it has 714 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric464 unique values
0 missing
molecule_id (row identifier)nominal714 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b653numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b695numeric2 unique values
0 missing
FCFP4_1024b574numeric2 unique values
0 missing
FCFP4_1024b725numeric2 unique values
0 missing
FCFP4_1024b894numeric2 unique values
0 missing
FCFP4_1024b124numeric2 unique values
0 missing
FCFP4_1024b396numeric2 unique values
0 missing
FCFP4_1024b872numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b114numeric2 unique values
0 missing
FCFP4_1024b226numeric2 unique values
0 missing
FCFP4_1024b868numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b859numeric2 unique values
0 missing
FCFP4_1024b18numeric2 unique values
0 missing
FCFP4_1024b965numeric2 unique values
0 missing
FCFP4_1024b800numeric2 unique values
0 missing
FCFP4_1024b728numeric2 unique values
0 missing
FCFP4_1024b960numeric2 unique values
0 missing
FCFP4_1024b302numeric2 unique values
0 missing
FCFP4_1024b404numeric2 unique values
0 missing
FCFP4_1024b537numeric2 unique values
0 missing
FCFP4_1024b981numeric2 unique values
0 missing
FCFP4_1024b885numeric2 unique values
0 missing
FCFP4_1024b977numeric2 unique values
0 missing
FCFP4_1024b365numeric2 unique values
0 missing
FCFP4_1024b495numeric2 unique values
0 missing
FCFP4_1024b821numeric2 unique values
0 missing
FCFP4_1024b514numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b657numeric2 unique values
0 missing
FCFP4_1024b754numeric2 unique values
0 missing
FCFP4_1024b374numeric2 unique values
0 missing
FCFP4_1024b161numeric2 unique values
0 missing
FCFP4_1024b862numeric2 unique values
0 missing
FCFP4_1024b401numeric2 unique values
0 missing
FCFP4_1024b32numeric2 unique values
0 missing
FCFP4_1024b31numeric2 unique values
0 missing
FCFP4_1024b134numeric2 unique values
0 missing
FCFP4_1024b309numeric2 unique values
0 missing
FCFP4_1024b943numeric2 unique values
0 missing
FCFP4_1024b945numeric2 unique values
0 missing
FCFP4_1024b480numeric2 unique values
0 missing
FCFP4_1024b106numeric2 unique values
0 missing
FCFP4_1024b701numeric2 unique values
0 missing
FCFP4_1024b572numeric2 unique values
0 missing
FCFP4_1024b35numeric2 unique values
0 missing
FCFP4_1024b769numeric2 unique values
0 missing
FCFP4_1024b260numeric2 unique values
0 missing
FCFP4_1024b865numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b420numeric2 unique values
0 missing
FCFP4_1024b137numeric2 unique values
0 missing
FCFP4_1024b541numeric2 unique values
0 missing
FCFP4_1024b805numeric2 unique values
0 missing
FCFP4_1024b257numeric2 unique values
0 missing
FCFP4_1024b478numeric2 unique values
0 missing
FCFP4_1024b1011numeric2 unique values
0 missing
FCFP4_1024b318numeric2 unique values
0 missing
FCFP4_1024b922numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b638numeric2 unique values
0 missing
FCFP4_1024b183numeric2 unique values
0 missing
FCFP4_1024b992numeric2 unique values
0 missing
FCFP4_1024b248numeric2 unique values
0 missing
FCFP4_1024b355numeric2 unique values
0 missing
FCFP4_1024b677numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b799numeric2 unique values
0 missing
FCFP4_1024b575numeric2 unique values
0 missing
FCFP4_1024b265numeric2 unique values
0 missing
FCFP4_1024b595numeric2 unique values
0 missing
FCFP4_1024b42numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b522numeric2 unique values
0 missing
FCFP4_1024b664numeric2 unique values
0 missing
FCFP4_1024b208numeric2 unique values
0 missing
FCFP4_1024b764numeric2 unique values
0 missing
FCFP4_1024b678numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b235numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b169numeric2 unique values
0 missing
FCFP4_1024b939numeric2 unique values
0 missing
FCFP4_1024b468numeric2 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b702numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric2 unique values
0 missing

62 properties

714
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
26.72
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.96
Third quartile of skewness among attributes of the numeric type.
1.31
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.43
First quartile of kurtosis among attributes of the numeric type.
0.37
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.05
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
38.14
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.22
Mean of means among attributes of the numeric type.
1.79
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
0.07
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.9
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.15
Number of attributes divided by the number of instances.
3.55
Mean skewness among attributes of the numeric type.
0.13
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.31
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.16
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
714
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
14.6
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.17
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-13.28
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task