Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3490

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3490

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3490 (TID: 100610), and it has 273 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric43 unique values
0 missing
molecule_id (row identifier)nominal273 unique values
0 missing
C.043numeric4 unique values
0 missing
nTriazolesnumeric2 unique values
0 missing
NaasNnumeric3 unique values
0 missing
SaaNnumeric193 unique values
0 missing
N.075numeric5 unique values
0 missing
NaaNnumeric5 unique values
0 missing
CATS2D_01_AAnumeric3 unique values
0 missing
nCtnumeric6 unique values
0 missing
N.073numeric3 unique values
0 missing
nCrtnumeric6 unique values
0 missing
C.003numeric6 unique values
0 missing
SsssCHnumeric124 unique values
0 missing
N.072numeric5 unique values
0 missing
C.008numeric4 unique values
0 missing
DLS_01numeric3 unique values
0 missing
Eig03_EA.dm.numeric30 unique values
0 missing
CATS2D_02_AAnumeric7 unique values
0 missing
CATS2D_02_DAnumeric6 unique values
0 missing
nRCONHRnumeric3 unique values
0 missing
piPC10numeric181 unique values
0 missing
CATS2D_07_LLnumeric29 unique values
0 missing
CATS2D_02_DLnumeric7 unique values
0 missing
C.025numeric5 unique values
0 missing
Eig04_EA.dm.numeric16 unique values
0 missing
NssNHnumeric4 unique values
0 missing
piPC06numeric180 unique values
0 missing
DLS_03numeric3 unique values
0 missing
DLS_06numeric3 unique values
0 missing
nCIRnumeric13 unique values
0 missing
CATS2D_03_DAnumeric3 unique values
0 missing
piIDnumeric177 unique values
0 missing
C.011numeric3 unique values
0 missing
piPC03numeric141 unique values
0 missing
nR05numeric3 unique values
0 missing
D.Dtr08numeric102 unique values
0 missing
P_VSA_LogP_2numeric84 unique values
0 missing
MSDnumeric188 unique values
0 missing
ATSC3mnumeric249 unique values
0 missing
P_VSA_m_3numeric66 unique values
0 missing
nABnumeric11 unique values
0 missing
HVcpxnumeric176 unique values
0 missing
ICRnumeric149 unique values
0 missing
IDEnumeric170 unique values
0 missing
nHAccnumeric9 unique values
0 missing
CATS2D_03_AAnumeric5 unique values
0 missing
piPC04numeric162 unique values
0 missing
CATS2D_04_ALnumeric24 unique values
0 missing
nDBnumeric6 unique values
0 missing
NdOnumeric6 unique values
0 missing
O.058numeric6 unique values
0 missing
X4Avnumeric47 unique values
0 missing
GATS3mnumeric185 unique values
0 missing
RBNnumeric9 unique values
0 missing
UNIPnumeric101 unique values
0 missing
SpMax4_Bh.s.numeric146 unique values
0 missing
BLTA96numeric166 unique values
0 missing
BLTD48numeric162 unique values
0 missing
MLOGPnumeric196 unique values
0 missing
MLOGP2numeric199 unique values
0 missing
SRW05numeric9 unique values
0 missing
BLTF96numeric161 unique values
0 missing
CATS2D_06_LLnumeric23 unique values
0 missing
NaasCnumeric10 unique values
0 missing
H.numeric95 unique values
0 missing
ATSC3enumeric209 unique values
0 missing

62 properties

273
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
1.24
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.8
Third quartile of skewness among attributes of the numeric type.
159.63
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.9
First quartile of kurtosis among attributes of the numeric type.
1.82
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.62
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.24
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.13
Mean of means among attributes of the numeric type.
-0.11
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.55
First quartile of standard deviation of attributes of the numeric type.
0.68
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.5
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.25
Number of attributes divided by the number of instances.
0.34
Mean skewness among attributes of the numeric type.
1.54
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
5.47
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.22
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.93
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.13
Second quartile (Median) of standard deviation of attributes of the numeric type.
4.71
Maximum kurtosis among attributes of the numeric type.
-5.77
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
134.57
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.07
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
6.03
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.68
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task