Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3403

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3403

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3403 (TID: 11924), and it has 233 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric187 unique values
0 missing
molecule_id (row identifier)nominal233 unique values
0 missing
MATS4inumeric150 unique values
0 missing
GGI5numeric82 unique values
0 missing
GATS4enumeric175 unique values
0 missing
JGI5numeric27 unique values
0 missing
SaaaCnumeric49 unique values
0 missing
GATS4pnumeric169 unique values
0 missing
SpMin1_Bh.i.numeric60 unique values
0 missing
Eta_betaPnumeric25 unique values
0 missing
JGI7numeric19 unique values
0 missing
C.028numeric5 unique values
0 missing
JGI1numeric87 unique values
0 missing
MATS2snumeric136 unique values
0 missing
N.070numeric3 unique values
0 missing
nArNHRnumeric3 unique values
0 missing
Eig03_EA.dm.numeric17 unique values
0 missing
H.047numeric24 unique values
0 missing
PCDnumeric175 unique values
0 missing
SaaNnumeric51 unique values
0 missing
Eig03_AEA.ri.numeric102 unique values
0 missing
Eig03_EAnumeric93 unique values
0 missing
SM11_AEA.bo.numeric93 unique values
0 missing
GATS7snumeric198 unique values
0 missing
GATS4inumeric153 unique values
0 missing
O.numeric66 unique values
0 missing
MATS5snumeric161 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
nPyridinesnumeric3 unique values
0 missing
GATS1enumeric122 unique values
0 missing
SpMAD_AEA.ed.numeric116 unique values
0 missing
CATS2D_05_ALnumeric18 unique values
0 missing
IVDEnumeric114 unique values
0 missing
SM10_EA.bo.numeric117 unique values
0 missing
SM11_EA.bo.numeric109 unique values
0 missing
SM12_EA.bo.numeric111 unique values
0 missing
SM13_EA.bo.numeric106 unique values
0 missing
SM14_EA.bo.numeric104 unique values
0 missing
SM15_EA.bo.numeric104 unique values
0 missing
Eta_B_Anumeric27 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
CATS2D_08_ALnumeric14 unique values
0 missing
GGI1numeric17 unique values
0 missing
Eig01_EA.bo.numeric40 unique values
0 missing
SM11_AEA.ri.numeric40 unique values
0 missing
SpDiam_EA.bo.numeric41 unique values
0 missing
SpMax_EA.bo.numeric40 unique values
0 missing
NdsCHnumeric6 unique values
0 missing
SdsCHnumeric79 unique values
0 missing
SpDiam_EA.ed.numeric44 unique values
0 missing
SpMAD_EA.dm.numeric119 unique values
0 missing
MATS2pnumeric142 unique values
0 missing
Eig02_EA.dm.numeric23 unique values
0 missing
nCconjnumeric6 unique values
0 missing
JGI6numeric19 unique values
0 missing
Menumeric39 unique values
0 missing
SpMax3_Bh.s.numeric83 unique values
0 missing
MATS2vnumeric142 unique values
0 missing
P_VSA_m_3numeric25 unique values
0 missing
Eig04_EA.dm.numeric21 unique values
0 missing
SpMax1_Bh.s.numeric33 unique values
0 missing
CATS2D_09_ALnumeric12 unique values
0 missing
GATS2pnumeric149 unique values
0 missing

62 properties

233
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
2.68
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.47
Third quartile of skewness among attributes of the numeric type.
30.31
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.3
First quartile of kurtosis among attributes of the numeric type.
1.14
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.34
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.98
Mean of means among attributes of the numeric type.
-0.09
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.11
First quartile of standard deviation of attributes of the numeric type.
0.22
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.58
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.27
Number of attributes divided by the number of instances.
0.57
Mean skewness among attributes of the numeric type.
1.36
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.6
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.31
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
6.49
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
51.12
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.08
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
4.97
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.05
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task