Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5443

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5443

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5443 (TID: 100077), and it has 935 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric221 unique values
0 missing
molecule_id (row identifier)nominal935 unique values
0 missing
FCFP4_1024b782numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b134numeric2 unique values
0 missing
FCFP4_1024b199numeric2 unique values
0 missing
FCFP4_1024b610numeric2 unique values
0 missing
FCFP4_1024b539numeric2 unique values
0 missing
FCFP4_1024b563numeric2 unique values
0 missing
FCFP4_1024b727numeric2 unique values
0 missing
FCFP4_1024b641numeric2 unique values
0 missing
FCFP4_1024b86numeric2 unique values
0 missing
FCFP4_1024b217numeric2 unique values
0 missing
FCFP4_1024b742numeric2 unique values
0 missing
FCFP4_1024b685numeric2 unique values
0 missing
FCFP4_1024b265numeric2 unique values
0 missing
FCFP4_1024b283numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b138numeric2 unique values
0 missing
FCFP4_1024b780numeric2 unique values
0 missing
FCFP4_1024b451numeric2 unique values
0 missing
FCFP4_1024b821numeric2 unique values
0 missing
FCFP4_1024b203numeric2 unique values
0 missing
FCFP4_1024b85numeric2 unique values
0 missing
FCFP4_1024b933numeric2 unique values
0 missing
FCFP4_1024b868numeric2 unique values
0 missing
FCFP4_1024b453numeric2 unique values
0 missing
FCFP4_1024b352numeric2 unique values
0 missing
FCFP4_1024b426numeric2 unique values
0 missing
FCFP4_1024b169numeric2 unique values
0 missing
FCFP4_1024b808numeric2 unique values
0 missing
FCFP4_1024b739numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b858numeric2 unique values
0 missing
FCFP4_1024b506numeric2 unique values
0 missing
FCFP4_1024b588numeric2 unique values
0 missing
FCFP4_1024b673numeric2 unique values
0 missing
FCFP4_1024b44numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b400numeric2 unique values
0 missing
FCFP4_1024b258numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b555numeric2 unique values
0 missing
FCFP4_1024b495numeric2 unique values
0 missing
FCFP4_1024b564numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b950numeric2 unique values
0 missing
FCFP4_1024b717numeric2 unique values
0 missing
FCFP4_1024b189numeric2 unique values
0 missing
FCFP4_1024b409numeric2 unique values
0 missing
FCFP4_1024b301numeric2 unique values
0 missing
FCFP4_1024b748numeric2 unique values
0 missing
FCFP4_1024b64numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b156numeric2 unique values
0 missing
FCFP4_1024b648numeric2 unique values
0 missing
FCFP4_1024b183numeric2 unique values
0 missing
FCFP4_1024b22numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b976numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b438numeric2 unique values
0 missing
FCFP4_1024b402numeric2 unique values
0 missing
FCFP4_1024b248numeric2 unique values
0 missing
FCFP4_1024b656numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing
FCFP4_1024b793numeric2 unique values
0 missing
FCFP4_1024b452numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b677numeric2 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b769numeric2 unique values
0 missing
FCFP4_1024b228numeric2 unique values
0 missing
FCFP4_1024b754numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b781numeric2 unique values
0 missing
FCFP4_1024b89numeric2 unique values
0 missing
FCFP4_1024b252numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric2 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric2 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric2 unique values
0 missing
FCFP4_1024b1012numeric2 unique values
0 missing
FCFP4_1024b1013numeric2 unique values
0 missing
FCFP4_1024b1014numeric2 unique values
0 missing
FCFP4_1024b1015numeric2 unique values
0 missing
FCFP4_1024b1016numeric2 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing

62 properties

935
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
30.58
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
5.32
Third quartile of skewness among attributes of the numeric type.
1.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.38
First quartile of kurtosis among attributes of the numeric type.
0.33
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.03
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
46.61
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.17
Mean of means among attributes of the numeric type.
2.26
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.18
First quartile of standard deviation of attributes of the numeric type.
-0
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
12.78
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
4.94
Mean skewness among attributes of the numeric type.
0.06
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.25
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.74
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
935
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.68
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
26.35
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.93
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task