Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4909

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4909

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4909 (TID: 100427), and it has 77 rows and 59 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

61 features

pXC50 (target)numeric45 unique values
0 missing
molecule_id (row identifier)nominal77 unique values
0 missing
Eig08_EAnumeric47 unique values
0 missing
Eig08_EA.ed.numeric45 unique values
0 missing
SM02_AEA.dm.numeric47 unique values
0 missing
SM03_AEA.ri.numeric45 unique values
0 missing
SpMin5_Bh.s.numeric60 unique values
0 missing
SpDiam_AEA.ri.numeric45 unique values
0 missing
nSnumeric4 unique values
0 missing
P_VSA_i_1numeric7 unique values
0 missing
Eig01_EAnumeric27 unique values
0 missing
SM09_AEA.bo.numeric27 unique values
0 missing
SpDiam_EAnumeric29 unique values
0 missing
SpMax_EAnumeric27 unique values
0 missing
SpMax1_Bh.m.numeric35 unique values
0 missing
Eig08_AEA.ed.numeric46 unique values
0 missing
Eig07_EAnumeric50 unique values
0 missing
Eig08_AEA.ri.numeric64 unique values
0 missing
Eig09_EAnumeric37 unique values
0 missing
SM03_AEA.dm.numeric37 unique values
0 missing
SM15_AEA.bo.numeric50 unique values
0 missing
nHMnumeric5 unique values
0 missing
P_VSA_m_4numeric12 unique values
0 missing
CATS2D_02_ALnumeric9 unique values
0 missing
SpMin3_Bh.m.numeric52 unique values
0 missing
Eig04_AEA.ri.numeric52 unique values
0 missing
Eig04_EAnumeric45 unique values
0 missing
Eig05_EA.ed.numeric44 unique values
0 missing
Eig08_EA.ri.numeric63 unique values
0 missing
Eig09_AEA.ri.numeric56 unique values
0 missing
Eig09_EA.ri.numeric52 unique values
0 missing
GGI3numeric41 unique values
0 missing
MPC07numeric43 unique values
0 missing
Psi_e_1numeric71 unique values
0 missing
SM04_AEA.bo.numeric54 unique values
0 missing
SM12_AEA.bo.numeric45 unique values
0 missing
SM14_AEA.dm.numeric44 unique values
0 missing
SRW10numeric54 unique values
0 missing
VARnumeric40 unique values
0 missing
Eig07_AEA.ri.numeric66 unique values
0 missing
Eig12_AEA.dm.numeric50 unique values
0 missing
S1Knumeric61 unique values
0 missing
SpMin5_Bh.m.numeric55 unique values
0 missing
Eig01_AEA.bo.numeric34 unique values
0 missing
SpMax_AEA.bo.numeric34 unique values
0 missing
JGI8numeric13 unique values
0 missing
BBInumeric30 unique values
0 missing
Eig06_AEA.ed.numeric41 unique values
0 missing
Eig06_EA.ed.numeric45 unique values
0 missing
Eig07_AEA.ed.numeric47 unique values
0 missing
Eig07_EA.ed.numeric50 unique values
0 missing
Eig12_AEA.ed.numeric41 unique values
0 missing
MPC02numeric30 unique values
0 missing
MPC03numeric38 unique values
0 missing
MPC04numeric39 unique values
0 missing
MWC03numeric46 unique values
0 missing
MWC04numeric53 unique values
0 missing
MWC05numeric57 unique values
0 missing
piPC03numeric50 unique values
0 missing
piPC04numeric54 unique values
0 missing
piPC07numeric58 unique values
0 missing

62 properties

77
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
1
Number of nominal attributes.
1.21
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.22
Third quartile of skewness among attributes of the numeric type.
31.79
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.71
First quartile of kurtosis among attributes of the numeric type.
0.78
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.93
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.19
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.85
Mean of means among attributes of the numeric type.
-0.62
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.
0.44
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.79
Number of attributes divided by the number of instances.
-0.14
Mean skewness among attributes of the numeric type.
4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.11
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.35
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.33
Second quartile (Median) of standard deviation of attributes of the numeric type.
3.23
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
155.57
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.36
Percentage of numeric attributes.
5.48
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.99
Minimum skewness among attributes of the numeric type.
1.64
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task