Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3991

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3991

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3991 (TID: 12000), and it has 366 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric220 unique values
0 missing
molecule_id (row identifier)nominal366 unique values
0 missing
CATS2D_02_DDnumeric4 unique values
0 missing
SsOHnumeric137 unique values
0 missing
O.057numeric5 unique values
0 missing
NsOHnumeric7 unique values
0 missing
P_VSA_LogP_4numeric138 unique values
0 missing
Chi1_EA.dm.numeric318 unique values
0 missing
SdNHnumeric173 unique values
0 missing
P_VSA_e_5numeric77 unique values
0 missing
P_VSA_m_3numeric103 unique values
0 missing
nNnumeric11 unique values
0 missing
HVcpxnumeric236 unique values
0 missing
AECCnumeric262 unique values
0 missing
GATS1snumeric223 unique values
0 missing
CATS2D_02_DLnumeric17 unique values
0 missing
Chi0_EA.dm.numeric306 unique values
0 missing
ICRnumeric223 unique values
0 missing
IDEnumeric236 unique values
0 missing
NdNHnumeric2 unique values
0 missing
C.040numeric12 unique values
0 missing
Eig09_EA.ri.numeric250 unique values
0 missing
CATS2D_09_ANnumeric4 unique values
0 missing
CATS2D_02_DPnumeric4 unique values
0 missing
Eig03_EA.dm.numeric66 unique values
0 missing
DECCnumeric241 unique values
0 missing
Eig10_EA.ri.numeric241 unique values
0 missing
Eig11_AEA.dm.numeric210 unique values
0 missing
Eig11_AEA.ri.numeric213 unique values
0 missing
Eig11_EAnumeric186 unique values
0 missing
Eig11_EA.ri.numeric215 unique values
0 missing
Eig12_AEA.bo.numeric169 unique values
0 missing
Eig12_AEA.dm.numeric236 unique values
0 missing
Eig12_AEA.ri.numeric200 unique values
0 missing
Eig12_EAnumeric171 unique values
0 missing
Eig12_EA.ed.numeric219 unique values
0 missing
Eig12_EA.ri.numeric192 unique values
0 missing
GGI4numeric224 unique values
0 missing
MSDnumeric277 unique values
0 missing
SM05_AEA.dm.numeric186 unique values
0 missing
SM06_AEA.dm.numeric171 unique values
0 missing
SM07_AEA.ri.numeric219 unique values
0 missing
CATS2D_06_DAnumeric11 unique values
0 missing
CATS2D_07_PLnumeric6 unique values
0 missing
Eig15_AEA.dm.numeric201 unique values
0 missing
CATS2D_06_DDnumeric6 unique values
0 missing
CATS2D_08_ANnumeric6 unique values
0 missing
P_VSA_MR_6numeric253 unique values
0 missing
GGI5numeric220 unique values
0 missing
CATS2D_08_PLnumeric6 unique values
0 missing
IDDEnumeric204 unique values
0 missing
SssNHnumeric267 unique values
0 missing
CATS2D_05_DDnumeric6 unique values
0 missing
CATS2D_06_APnumeric3 unique values
0 missing
Eig10_EA.dm.numeric19 unique values
0 missing
Eig11_AEA.ed.numeric208 unique values
0 missing
Eig11_EA.ed.numeric222 unique values
0 missing
SM06_AEA.ri.numeric222 unique values
0 missing
SPInumeric285 unique values
0 missing
Eig13_EA.ed.numeric214 unique values
0 missing
SM08_AEA.ri.numeric214 unique values
0 missing
GATS8inumeric220 unique values
0 missing
N.066numeric5 unique values
0 missing
nRNH2numeric5 unique values
0 missing
CATS2D_08_DDnumeric7 unique values
0 missing
Eig14_AEA.bo.numeric199 unique values
0 missing
Eta_F_Anumeric264 unique values
0 missing
Eig07_EA.dm.numeric49 unique values
0 missing
ATSC2snumeric357 unique values
0 missing
ATSC6snumeric358 unique values
0 missing

62 properties

366
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
4.32
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.17
Third quartile of skewness among attributes of the numeric type.
241.79
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.46
First quartile of kurtosis among attributes of the numeric type.
3.54
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.1
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.54
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
15.71
Mean of means among attributes of the numeric type.
0.68
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.54
First quartile of standard deviation of attributes of the numeric type.
-0.03
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
5.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.19
Number of attributes divided by the number of instances.
1.82
Mean skewness among attributes of the numeric type.
2.12
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
14.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.57
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.59
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
17.1
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
185.82
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
11.41
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
4.85
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.65
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task