Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5508

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5508

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5508 (TID: 101002), and it has 368 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric111 unique values
0 missing
molecule_id (row identifier)nominal368 unique values
0 missing
SpDiam_AEA.bo.numeric185 unique values
0 missing
H.048numeric4 unique values
0 missing
SpDiam_AEA.ri.numeric179 unique values
0 missing
D.Dtr09numeric185 unique values
0 missing
SpMin3_Bh.p.numeric189 unique values
0 missing
SRW09numeric35 unique values
0 missing
Eig06_AEA.bo.numeric190 unique values
0 missing
nC.N.N.numeric2 unique values
0 missing
nR09numeric5 unique values
0 missing
CATS2D_06_LLnumeric17 unique values
0 missing
MPC08numeric137 unique values
0 missing
ATSC7pnumeric339 unique values
0 missing
ATS6pnumeric295 unique values
0 missing
CATS2D_02_DAnumeric5 unique values
0 missing
SaaOnumeric42 unique values
0 missing
C.030numeric2 unique values
0 missing
ATS5pnumeric281 unique values
0 missing
piPC08numeric233 unique values
0 missing
X4solnumeric263 unique values
0 missing
SpDiam_EA.ed.numeric181 unique values
0 missing
ATS6enumeric300 unique values
0 missing
piPC06numeric222 unique values
0 missing
Chi1_EA.dm.numeric199 unique values
0 missing
nFuranesnumeric2 unique values
0 missing
Eig01_EA.ed.numeric162 unique values
0 missing
SM10_AEA.dm.numeric162 unique values
0 missing
SpMax_EA.ed.numeric162 unique values
0 missing
C.029numeric3 unique values
0 missing
SpMin4_Bh.m.numeric199 unique values
0 missing
CATS2D_03_AAnumeric5 unique values
0 missing
Eig06_AEA.ri.numeric258 unique values
0 missing
MPC07numeric120 unique values
0 missing
X4vnumeric338 unique values
0 missing
P_VSA_LogP_5numeric192 unique values
0 missing
SpMin3_Bh.v.numeric177 unique values
0 missing
SM13_EA.ed.numeric212 unique values
0 missing
SM14_EA.ed.numeric216 unique values
0 missing
SM15_EA.ed.numeric217 unique values
0 missing
X5Anumeric27 unique values
0 missing
Uinumeric16 unique values
0 missing
X5solnumeric263 unique values
0 missing
MPC06numeric105 unique values
0 missing
CATS2D_08_DAnumeric4 unique values
0 missing
X3vnumeric327 unique values
0 missing
SpMin3_Bh.e.numeric164 unique values
0 missing
MWC09numeric216 unique values
0 missing
SpMax6_Bh.m.numeric251 unique values
0 missing
Eig05_AEA.dm.numeric226 unique values
0 missing
piPC07numeric222 unique values
0 missing
Eig01_AEA.bo.numeric137 unique values
0 missing
SpMax_AEA.bo.numeric137 unique values
0 missing
SM11_EA.ed.numeric214 unique values
0 missing
SM12_EA.ed.numeric218 unique values
0 missing
SM11_EAnumeric217 unique values
0 missing
ATS6vnumeric307 unique values
0 missing
MATS5inumeric246 unique values
0 missing
SM10_EAnumeric214 unique values
0 missing
X4numeric236 unique values
0 missing
nCarnumeric16 unique values
0 missing
SRW10numeric193 unique values
0 missing
PCDnumeric215 unique values
0 missing
SM15_EAnumeric227 unique values
0 missing
ATS6inumeric303 unique values
0 missing
SpMin3_Bh.i.numeric161 unique values
0 missing
SM12_EAnumeric221 unique values
0 missing

62 properties

368
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
4.2
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.15
Third quartile of skewness among attributes of the numeric type.
57.18
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.24
First quartile of kurtosis among attributes of the numeric type.
0.87
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.77
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.68
Mean of means among attributes of the numeric type.
-0.85
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.
0.51
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.23
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.18
Number of attributes divided by the number of instances.
-0.21
Mean skewness among attributes of the numeric type.
4.69
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.01
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.52
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.23
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
15.72
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
106.7
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.38
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
11.56
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.5
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task