Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5017

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5017

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5017 (TID: 20033), and it has 273 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric188 unique values
0 missing
molecule_id (row identifier)nominal273 unique values
0 missing
CATS2D_02_ALnumeric13 unique values
0 missing
SsssCHnumeric150 unique values
0 missing
C.003numeric5 unique values
0 missing
C.002numeric8 unique values
0 missing
nCrtnumeric5 unique values
0 missing
nCrsnumeric9 unique values
0 missing
nCsnumeric10 unique values
0 missing
nCtnumeric5 unique values
0 missing
X4Avnumeric38 unique values
0 missing
Eta_L_Anumeric97 unique values
0 missing
SpMin1_Bh.s.numeric127 unique values
0 missing
P_VSA_s_3numeric183 unique values
0 missing
Eta_FL_Anumeric101 unique values
0 missing
X5Avnumeric28 unique values
0 missing
P_VSA_MR_2numeric89 unique values
0 missing
SssCH2numeric260 unique values
0 missing
NssOnumeric5 unique values
0 missing
O.060numeric5 unique values
0 missing
RBFnumeric104 unique values
0 missing
GATS3mnumeric166 unique values
0 missing
Eta_F_Anumeric201 unique values
0 missing
H.numeric80 unique values
0 missing
SaaCHnumeric261 unique values
0 missing
MPC07numeric111 unique values
0 missing
MPC08numeric121 unique values
0 missing
nArNR2numeric2 unique values
0 missing
H.052numeric13 unique values
0 missing
nArORnumeric5 unique values
0 missing
SpMax1_Bh.i.numeric150 unique values
0 missing
Eta_betaS_Anumeric73 unique values
0 missing
MATS2inumeric169 unique values
0 missing
X1Avnumeric77 unique values
0 missing
BLInumeric146 unique values
0 missing
GATS3snumeric200 unique values
0 missing
N.071numeric2 unique values
0 missing
MPC06numeric93 unique values
0 missing
MPC10numeric132 unique values
0 missing
nCsp3numeric18 unique values
0 missing
Eig01_EA.ed.numeric120 unique values
0 missing
SM10_AEA.dm.numeric120 unique values
0 missing
SpMax_EA.ed.numeric120 unique values
0 missing
NaaCHnumeric12 unique values
0 missing
NssCH2numeric14 unique values
0 missing
Eta_C_Anumeric208 unique values
0 missing
SM15_EA.ed.numeric175 unique values
0 missing
X0Avnumeric90 unique values
0 missing
SssOnumeric169 unique values
0 missing
piPC03numeric143 unique values
0 missing
MPC09numeric124 unique values
0 missing
SM14_EA.ed.numeric178 unique values
0 missing
X3Avnumeric51 unique values
0 missing
SM11_EA.ed.numeric188 unique values
0 missing
SM12_EA.ed.numeric186 unique values
0 missing
SM13_EA.ed.numeric183 unique values
0 missing
P_VSA_s_5numeric13 unique values
0 missing
SM10_EA.ed.numeric181 unique values
0 missing
Eig01_EAnumeric103 unique values
0 missing
SM09_AEA.bo.numeric103 unique values
0 missing
SpDiam_EAnumeric103 unique values
0 missing
SpMax_EAnumeric103 unique values
0 missing
PHInumeric214 unique values
0 missing
S3Knumeric219 unique values
0 missing
Eig01_AEA.ed.numeric104 unique values
0 missing
SpMax_AEA.ed.numeric104 unique values
0 missing
ATSC2pnumeric232 unique values
0 missing
IC2numeric219 unique values
0 missing

62 properties

273
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
18.98
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
2.72
Third quartile of kurtosis among attributes of the numeric type.
99.85
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.03
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.49
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
1.15
Third quartile of skewness among attributes of the numeric type.
2.19
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.82
Third quartile of standard deviation of attributes of the numeric type.
51.71
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.15
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.76
First quartile of means among attributes of the numeric type.
1.78
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.64
Mean of means among attributes of the numeric type.
0.15
First quartile of skewness among attributes of the numeric type.
-0.08
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.95
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.61
Mean skewness among attributes of the numeric type.
4.37
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.59
Second quartile (Median) of skewness among attributes of the numeric type.
0.66
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.3
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task