Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3818

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3818

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3818 (TID: 10669), and it has 36 rows and 58 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

60 features

pXC50 (target)numeric31 unique values
0 missing
molecule_id (row identifier)nominal36 unique values
0 missing
DLS_05numeric2 unique values
0 missing
SaaNnumeric13 unique values
0 missing
Eig05_EA.bo.numeric27 unique values
0 missing
SM15_AEA.ri.numeric27 unique values
0 missing
Mpnumeric22 unique values
0 missing
Mvnumeric25 unique values
0 missing
SpMaxA_EA.dm.numeric22 unique values
0 missing
LOCnumeric21 unique values
0 missing
SpMax2_Bh.m.numeric27 unique values
0 missing
Eig05_AEA.bo.numeric27 unique values
0 missing
Eta_alpha_Anumeric20 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
H.053numeric4 unique values
0 missing
GATS4mnumeric32 unique values
0 missing
ARRnumeric9 unique values
0 missing
GATS7snumeric32 unique values
0 missing
Eig04_AEA.ri.numeric30 unique values
0 missing
Eig04_EA.ri.numeric30 unique values
0 missing
Minumeric18 unique values
0 missing
SpMax1_Bh.m.numeric31 unique values
0 missing
SpMax1_Bh.v.numeric31 unique values
0 missing
GATS1pnumeric25 unique values
0 missing
GATS1vnumeric24 unique values
0 missing
GATS2mnumeric30 unique values
0 missing
P_VSA_p_3numeric28 unique values
0 missing
P_VSA_v_3numeric28 unique values
0 missing
SaaCHnumeric17 unique values
0 missing
C.027numeric4 unique values
0 missing
CATS2D_02_AAnumeric4 unique values
0 missing
CIC3numeric26 unique values
0 missing
Eig01_EA.dm.numeric12 unique values
0 missing
H.049numeric4 unique values
0 missing
JGTnumeric26 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
nDBnumeric4 unique values
0 missing
NdOnumeric2 unique values
0 missing
NdssCnumeric4 unique values
0 missing
nPyridinesnumeric3 unique values
0 missing
NRSnumeric4 unique values
0 missing
O.058numeric2 unique values
0 missing
P_VSA_e_5numeric7 unique values
0 missing
P_VSA_LogP_1numeric9 unique values
0 missing
P_VSA_MR_7numeric4 unique values
0 missing
SdOnumeric21 unique values
0 missing
SM02_EA.dm.numeric18 unique values
0 missing
SM04_EA.dm.numeric18 unique values
0 missing
SM06_EA.dm.numeric18 unique values
0 missing
SM08_EA.dm.numeric18 unique values
0 missing
SM10_EA.dm.numeric18 unique values
0 missing
SM12_EA.dm.numeric17 unique values
0 missing
SM14_EA.dm.numeric17 unique values
0 missing
SpDiam_EA.dm.numeric12 unique values
0 missing
SpMAD_EA.dm.numeric24 unique values
0 missing
SpMax_EA.dm.numeric12 unique values
0 missing
SM02_AEA.bo.numeric23 unique values
0 missing
SM03_AEA.bo.numeric23 unique values
0 missing
SM03_EA.bo.numeric13 unique values
0 missing

62 properties

36
Number of instances (rows) of the dataset.
60
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
59
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
1.67
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-1.24
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.14
Mean skewness among attributes of the numeric type.
1.5
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.01
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.14
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.74
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.88
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
76.8
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.14
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.33
Percentage of numeric attributes.
3.88
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.88
Minimum skewness among attributes of the numeric type.
1.67
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.54
Third quartile of skewness among attributes of the numeric type.
36.7
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.59
First quartile of kurtosis among attributes of the numeric type.
1.31
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.75
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.55
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.57
Mean of means among attributes of the numeric type.
-0.4
First quartile of skewness among attributes of the numeric type.
-0.21
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task