Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL326

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL326

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL326 (TID: 12742), and it has 737 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric515 unique values
0 missing
molecule_id (row identifier)nominal737 unique values
0 missing
Chi1_EA.bo.numeric537 unique values
0 missing
ATS3enumeric439 unique values
0 missing
SpMax8_Bh.m.numeric339 unique values
0 missing
SpMin6_Bh.s.numeric298 unique values
0 missing
TIC5numeric467 unique values
0 missing
ATSC1vnumeric510 unique values
0 missing
nHnumeric45 unique values
0 missing
TIC3numeric549 unique values
0 missing
P_VSA_LogP_7numeric90 unique values
0 missing
ATS3inumeric448 unique values
0 missing
UNIPnumeric194 unique values
0 missing
ATSC1pnumeric509 unique values
0 missing
Eig08_EAnumeric354 unique values
0 missing
SM02_AEA.dm.numeric354 unique values
0 missing
SNarnumeric190 unique values
0 missing
Xtnumeric117 unique values
0 missing
RDCHInumeric457 unique values
0 missing
Chi0_EA.bo.numeric501 unique values
0 missing
Eta_betaSnumeric93 unique values
0 missing
Eta_Lnumeric595 unique values
0 missing
GMTInumeric527 unique values
0 missing
SMTInumeric526 unique values
0 missing
Eig08_AEA.ri.numeric402 unique values
0 missing
Chi1_EA.ri.numeric647 unique values
0 missing
Psi_i_0numeric550 unique values
0 missing
ATSC4mnumeric677 unique values
0 missing
SpMaxA_AEA.ed.numeric171 unique values
0 missing
IDMTnumeric533 unique values
0 missing
Xunumeric525 unique values
0 missing
CSInumeric406 unique values
0 missing
Eig08_EA.ri.numeric416 unique values
0 missing
ATS4inumeric479 unique values
0 missing
SMTIVnumeric656 unique values
0 missing
Eig10_EAnumeric349 unique values
0 missing
SM04_AEA.dm.numeric349 unique values
0 missing
Psi_i_1numeric604 unique values
0 missing
ECCnumeric311 unique values
0 missing
ATS4enumeric478 unique values
0 missing
Eig10_AEA.ri.numeric425 unique values
0 missing
SpMaxA_AEA.ri.numeric135 unique values
0 missing
Eig14_AEA.ri.numeric441 unique values
0 missing
Eig10_EA.ri.numeric415 unique values
0 missing
Chi1_AEA.bo.numeric481 unique values
0 missing
Chi1_AEA.dm.numeric481 unique values
0 missing
Chi1_AEA.ed.numeric481 unique values
0 missing
Chi1_AEA.ri.numeric481 unique values
0 missing
Chi1_EAnumeric481 unique values
0 missing
SpMaxA_EA.ri.numeric112 unique values
0 missing
ATSC3mnumeric642 unique values
0 missing
Chi1_EA.ed.numeric500 unique values
0 missing
IDETnumeric530 unique values
0 missing
Eig08_AEA.dm.numeric467 unique values
0 missing
Eig14_AEA.dm.numeric360 unique values
0 missing
TIC2numeric597 unique values
0 missing
Eta_Cnumeric682 unique values
0 missing
Chi0_AEA.bo.numeric407 unique values
0 missing
Chi0_AEA.dm.numeric407 unique values
0 missing
Chi0_AEA.ed.numeric407 unique values
0 missing
Chi0_AEA.ri.numeric407 unique values
0 missing
Chi0_EAnumeric407 unique values
0 missing
P_VSA_MR_1numeric71 unique values
0 missing
Eig11_EAnumeric322 unique values
0 missing
SM05_AEA.dm.numeric322 unique values
0 missing
SpMaxA_EA.bo.numeric130 unique values
0 missing
CIDnumeric315 unique values
0 missing
Eig14_EA.ri.numeric461 unique values
0 missing
X1numeric425 unique values
0 missing

62 properties

737
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.09
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
17.37
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.27
Mean skewness among attributes of the numeric type.
15
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2959.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.52
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.6
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
4.08
Second quartile (Median) of standard deviation of attributes of the numeric type.
123.91
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
30776.3
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
21.08
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
27.32
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.93
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
10.89
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.99
Third quartile of skewness among attributes of the numeric type.
85047.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
6.02
First quartile of kurtosis among attributes of the numeric type.
8.82
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.5
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
24.48
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1305.17
Mean of means among attributes of the numeric type.
-0.66
First quartile of skewness among attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.52
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task