Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1921

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1921

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1921 (TID: 148), and it has 404 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric268 unique values
0 missing
molecule_id (row identifier)nominal404 unique values
0 missing
Eig03_AEA.dm.numeric142 unique values
0 missing
Eig04_AEA.dm.numeric157 unique values
0 missing
SpMax1_Bh.v.numeric151 unique values
0 missing
JGI5numeric17 unique values
0 missing
SpMax1_Bh.p.numeric145 unique values
0 missing
SpMax1_Bh.e.numeric142 unique values
0 missing
Eig05_EA.ed.numeric207 unique values
0 missing
SM14_AEA.dm.numeric207 unique values
0 missing
C.numeric116 unique values
0 missing
Eig04_EA.ri.numeric207 unique values
0 missing
Eig05_AEA.ed.numeric155 unique values
0 missing
Eig10_EAnumeric198 unique values
0 missing
SM04_AEA.dm.numeric198 unique values
0 missing
GGI2numeric60 unique values
0 missing
Chi0_EA.dm.numeric242 unique values
0 missing
Eta_betaPnumeric47 unique values
0 missing
SpMax7_Bh.s.numeric136 unique values
0 missing
CATS2D_02_DPnumeric4 unique values
0 missing
CATS2D_02_PPnumeric3 unique values
0 missing
nC..N.N2numeric3 unique values
0 missing
MPC08numeric165 unique values
0 missing
SM14_EA.bo.numeric212 unique values
0 missing
Eig07_EA.dm.numeric39 unique values
0 missing
MAXDPnumeric341 unique values
0 missing
NsssCHnumeric13 unique values
0 missing
CATS2D_09_AAnumeric13 unique values
0 missing
Eta_beta_Anumeric204 unique values
0 missing
SM12_EA.ed.numeric200 unique values
0 missing
SM12_EA.bo.numeric224 unique values
0 missing
Eig09_AEA.dm.numeric211 unique values
0 missing
CATS2D_06_ALnumeric30 unique values
0 missing
SpDiam_EA.bo.numeric81 unique values
0 missing
Eig09_EA.dm.numeric23 unique values
0 missing
Eig10_AEA.ri.numeric243 unique values
0 missing
MPC05numeric129 unique values
0 missing
ATSC3enumeric321 unique values
0 missing
Eig07_EA.ed.numeric209 unique values
0 missing
SM02_AEA.ri.numeric209 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
IC2numeric305 unique values
0 missing
P_VSA_LogP_5numeric141 unique values
0 missing
CATS2D_05_DLnumeric25 unique values
0 missing
NaasCnumeric16 unique values
0 missing
nBMnumeric29 unique values
0 missing
Ucnumeric29 unique values
0 missing
ATSC5enumeric352 unique values
0 missing
PCRnumeric175 unique values
0 missing
CATS2D_09_DDnumeric9 unique values
0 missing
SM05_AEA.bo.numeric251 unique values
0 missing
CATS2D_06_DAnumeric14 unique values
0 missing
MATS2vnumeric210 unique values
0 missing
CATS2D_08_AAnumeric15 unique values
0 missing
SM10_EA.bo.numeric245 unique values
0 missing
piPC09numeric275 unique values
0 missing
ZM2MulPernumeric380 unique values
0 missing
ZM2Pernumeric382 unique values
0 missing
ZM2Vnumeric232 unique values
0 missing
Eig06_EAnumeric204 unique values
0 missing
SM14_AEA.bo.numeric204 unique values
0 missing
Eta_C_Anumeric312 unique values
0 missing
ATSC2enumeric285 unique values
0 missing
ATSC4snumeric396 unique values
0 missing
DELSnumeric397 unique values
0 missing
X0Anumeric63 unique values
0 missing
SM09_EA.bo.numeric232 unique values
0 missing
Eig02_AEA.dm.numeric123 unique values
0 missing

62 properties

404
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
3.7
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.06
Third quartile of skewness among attributes of the numeric type.
420.38
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.97
First quartile of kurtosis among attributes of the numeric type.
2.83
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.75
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.41
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
47.33
Mean of means among attributes of the numeric type.
0.37
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.32
First quartile of standard deviation of attributes of the numeric type.
0.21
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.17
Number of attributes divided by the number of instances.
0.85
Mean skewness among attributes of the numeric type.
4.3
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
19.59
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.74
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.48
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
22.53
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1055.62
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.82
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
9.23
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.64
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task