Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2407

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2407

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2407 (TID: 11199), and it has 104 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric76 unique values
0 missing
molecule_id (row identifier)nominal104 unique values
0 missing
Eig01_AEA.bo.numeric62 unique values
0 missing
SpMax_AEA.bo.numeric62 unique values
0 missing
Eig02_EA.bo.numeric50 unique values
0 missing
SM12_AEA.ri.numeric50 unique values
0 missing
SpDiam_AEA.bo.numeric65 unique values
0 missing
SpDiam_EA.ed.numeric61 unique values
0 missing
Eta_FLnumeric89 unique values
0 missing
CATS2D_06_AAnumeric8 unique values
0 missing
SpMax6_Bh.s.numeric69 unique values
0 missing
SpDiam_EA.ri.numeric58 unique values
0 missing
piPC03numeric78 unique values
0 missing
SpDiam_EAnumeric53 unique values
0 missing
CATS2D_03_ALnumeric18 unique values
0 missing
Eig01_EAnumeric51 unique values
0 missing
Eig01_EA.ed.numeric54 unique values
0 missing
SM09_AEA.bo.numeric51 unique values
0 missing
SM10_AEA.dm.numeric54 unique values
0 missing
SpMax_EAnumeric51 unique values
0 missing
SpMax_EA.ed.numeric54 unique values
0 missing
X5numeric88 unique values
0 missing
Eig01_EA.ri.numeric56 unique values
0 missing
SpMax_EA.ri.numeric56 unique values
0 missing
X3solnumeric90 unique values
0 missing
Eig01_AEA.ri.numeric55 unique values
0 missing
SpMax_AEA.ri.numeric55 unique values
0 missing
Eta_betanumeric63 unique values
0 missing
piPC02numeric63 unique values
0 missing
SM02_EA.bo.numeric63 unique values
0 missing
SM10_EA.bo.numeric83 unique values
0 missing
SM04_EA.bo.numeric83 unique values
0 missing
piPC05numeric84 unique values
0 missing
MATS2mnumeric84 unique values
0 missing
Xindexnumeric77 unique values
0 missing
piPC04numeric85 unique values
0 missing
Eig02_AEA.dm.numeric51 unique values
0 missing
SM11_EA.bo.numeric84 unique values
0 missing
SM12_EA.bo.numeric81 unique values
0 missing
MPC05numeric62 unique values
0 missing
SM13_EA.bo.numeric81 unique values
0 missing
SM14_EA.bo.numeric84 unique values
0 missing
SM15_EA.bo.numeric81 unique values
0 missing
SpDiam_AEA.ri.numeric77 unique values
0 missing
nHAccnumeric16 unique values
0 missing
P_VSA_LogP_4numeric34 unique values
0 missing
TPSA.NO.numeric39 unique values
0 missing
piPC06numeric86 unique values
0 missing
Eig13_AEA.dm.numeric67 unique values
0 missing
DLS_consnumeric30 unique values
0 missing
SpMin6_Bh.s.numeric70 unique values
0 missing
GATS2mnumeric82 unique values
0 missing
SM09_EA.bo.numeric83 unique values
0 missing
ATS1pnumeric85 unique values
0 missing
Spnumeric87 unique values
0 missing
SpMax5_Bh.p.numeric84 unique values
0 missing
SpMin3_Bh.p.numeric69 unique values
0 missing
Uinumeric16 unique values
0 missing
Eig01_AEA.ed.numeric46 unique values
0 missing
SpMax_AEA.ed.numeric46 unique values
0 missing
SpMax4_Bh.m.numeric88 unique values
0 missing
piPC07numeric87 unique values
0 missing
X5solnumeric90 unique values
0 missing
ATS6snumeric99 unique values
0 missing
SM07_EA.bo.numeric81 unique values
0 missing
Eig02_AEA.bo.numeric55 unique values
0 missing

62 properties

104
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
2.87
Maximum skewness among attributes of the numeric type.
0.11
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.68
Third quartile of skewness among attributes of the numeric type.
52.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.8
First quartile of kurtosis among attributes of the numeric type.
1.49
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.66
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.85
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.16
Mean of means among attributes of the numeric type.
-0.28
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.31
First quartile of standard deviation of attributes of the numeric type.
-0.38
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.34
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.63
Number of attributes divided by the number of instances.
0.2
Mean skewness among attributes of the numeric type.
5.47
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.89
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.32
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.46
Second quartile (Median) of standard deviation of attributes of the numeric type.
15.2
Maximum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
121.96
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.03
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
11.54
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.05
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task