Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL300

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL300

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL300 (TID: 11670), and it has 16 rows and 114 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

116 features

pXC50 (target)numeric16 unique values
0 missing
molecule_id (row identifier)nominal16 unique values
0 missing
ATS1enumeric16 unique values
0 missing
ATS1mnumeric16 unique values
0 missing
ATS2mnumeric15 unique values
0 missing
ATS3inumeric16 unique values
0 missing
ATS3vnumeric16 unique values
0 missing
ATS4pnumeric16 unique values
0 missing
ATS4vnumeric16 unique values
0 missing
ATS5pnumeric16 unique values
0 missing
ATS6mnumeric16 unique values
0 missing
ATS6snumeric16 unique values
0 missing
ATS7mnumeric15 unique values
0 missing
ATS8mnumeric16 unique values
0 missing
ATS8snumeric16 unique values
0 missing
ATSC1inumeric16 unique values
0 missing
ATSC2inumeric14 unique values
0 missing
ATSC3inumeric16 unique values
0 missing
ATSC8enumeric15 unique values
0 missing
BBInumeric11 unique values
0 missing
BIDnumeric14 unique values
0 missing
Chi0_AEA.bo.numeric15 unique values
0 missing
Chi0_AEA.dm.numeric15 unique values
0 missing
Chi0_AEA.ed.numeric15 unique values
0 missing
Chi0_AEA.ri.numeric15 unique values
0 missing
Chi0_EAnumeric15 unique values
0 missing
Chi0_EA.bo.numeric15 unique values
0 missing
Chi0_EA.ri.numeric16 unique values
0 missing
CIDnumeric15 unique values
0 missing
D.Dtr10numeric3 unique values
0 missing
Eig02_AEA.bo.numeric16 unique values
0 missing
Eig02_EA.ri.numeric16 unique values
0 missing
Eig06_AEA.bo.numeric14 unique values
0 missing
Eig06_AEA.dm.numeric14 unique values
0 missing
Eig06_AEA.ri.numeric14 unique values
0 missing
Eig06_EAnumeric13 unique values
0 missing
Eig06_EA.ri.numeric14 unique values
0 missing
Eig07_AEA.ed.numeric15 unique values
0 missing
Eig08_AEA.bo.numeric12 unique values
0 missing
Eig08_EA.bo.numeric12 unique values
0 missing
Eig09_AEA.bo.numeric14 unique values
0 missing
Eig09_AEA.ed.numeric13 unique values
0 missing
Eig09_AEA.ri.numeric13 unique values
0 missing
Eig09_EAnumeric12 unique values
0 missing
Eig09_EA.bo.numeric14 unique values
0 missing
Eig09_EA.ri.numeric13 unique values
0 missing
Eig10_AEA.bo.numeric14 unique values
0 missing
Eig10_AEA.dm.numeric13 unique values
0 missing
Eig10_AEA.ed.numeric13 unique values
0 missing
Eig10_AEA.ri.numeric13 unique values
0 missing
Eig10_EAnumeric13 unique values
0 missing
Eig10_EA.bo.numeric14 unique values
0 missing
Eig10_EA.ed.numeric15 unique values
0 missing
Eig10_EA.ri.numeric13 unique values
0 missing
Eig11_AEA.ed.numeric14 unique values
0 missing
Eig12_AEA.ed.numeric15 unique values
0 missing
Eig12_AEA.ri.numeric16 unique values
0 missing
Eig12_EAnumeric15 unique values
0 missing
Eig12_EA.bo.numeric16 unique values
0 missing
Eig12_EA.ed.numeric15 unique values
0 missing
Eig12_EA.ri.numeric16 unique values
0 missing
Eig13_AEA.bo.numeric14 unique values
0 missing
Eig13_AEA.ed.numeric13 unique values
0 missing
Eig13_AEA.ri.numeric16 unique values
0 missing
Eig13_EAnumeric15 unique values
0 missing
Eig13_EA.bo.numeric16 unique values
0 missing
Eig13_EA.ed.numeric15 unique values
0 missing
Eig13_EA.ri.numeric16 unique values
0 missing
Eta_sh_ynumeric16 unique values
0 missing
GATS4enumeric16 unique values
0 missing
GATS7snumeric16 unique values
0 missing
GATS8enumeric16 unique values
0 missing
GGI10numeric12 unique values
0 missing
GGI4numeric15 unique values
0 missing
HDcpxnumeric15 unique values
0 missing
IACnumeric16 unique values
0 missing
IC1numeric16 unique values
0 missing
IC2numeric16 unique values
0 missing
IDDMnumeric15 unique values
0 missing
IDMnumeric14 unique values
0 missing
IVDMnumeric14 unique values
0 missing
JGI4numeric10 unique values
0 missing
MATS1snumeric16 unique values
0 missing
MATS4mnumeric16 unique values
0 missing
MATS8snumeric16 unique values
0 missing
MPC01numeric10 unique values
0 missing
MPC02numeric11 unique values
0 missing
MPC03numeric13 unique values
0 missing
MPC05numeric14 unique values
0 missing
MPC07numeric13 unique values
0 missing
MPC08numeric12 unique values
0 missing
MPC09numeric15 unique values
0 missing
MPC10numeric14 unique values
0 missing
MWC01numeric10 unique values
0 missing
MWC02numeric13 unique values
0 missing
MWC03numeric15 unique values
0 missing
nBOnumeric10 unique values
0 missing
nR10numeric2 unique values
0 missing
Psi_e_0numeric16 unique values
0 missing
Psi_e_1numeric16 unique values
0 missing
P_VSA_e_2numeric16 unique values
0 missing
P_VSA_i_2numeric16 unique values
0 missing
P_VSA_LogP_4numeric6 unique values
0 missing
P_VSA_s_3numeric16 unique values
0 missing
RDSQnumeric15 unique values
0 missing
S0Knumeric13 unique values
0 missing
SIC1numeric15 unique values
0 missing
SM02_AEA.bo.numeric15 unique values
0 missing
SM02_AEA.ed.numeric15 unique values
0 missing
SM02_EAnumeric11 unique values
0 missing
SM02_EA.ri.numeric16 unique values
0 missing
SM03_AEA.bo.numeric16 unique values
0 missing
SM03_AEA.dm.numeric12 unique values
0 missing
SM03_AEA.ed.numeric15 unique values
0 missing
SM04_AEA.bo.numeric16 unique values
0 missing
SM04_AEA.dm.numeric13 unique values
0 missing

62 properties

16
Number of instances (rows) of the dataset.
116
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
115
Number of numeric attributes.
1
Number of nominal attributes.
-0.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.33
Mean of means among attributes of the numeric type.
-0.56
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.13
First quartile of standard deviation of attributes of the numeric type.
0.03
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.49
Second quartile (Median) of kurtosis among attributes of the numeric type.
7.25
Number of attributes divided by the number of instances.
-0.27
Mean skewness among attributes of the numeric type.
3.46
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.67
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.33
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.78
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.26
Second quartile (Median) of standard deviation of attributes of the numeric type.
6.55
Maximum kurtosis among attributes of the numeric type.
-0.38
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
208.74
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.16
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.14
Percentage of numeric attributes.
4.89
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.2
Minimum skewness among attributes of the numeric type.
0.86
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.92
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.03
Third quartile of skewness among attributes of the numeric type.
40.54
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.85
First quartile of kurtosis among attributes of the numeric type.
0.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.14
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task