Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3521

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3521

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3521 (TID: 12114), and it has 131 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric75 unique values
0 missing
molecule_id (row identifier)nominal131 unique values
0 missing
ATSC6enumeric116 unique values
0 missing
ATSC5enumeric119 unique values
0 missing
ATSC6snumeric126 unique values
0 missing
CATS2D_08_DLnumeric11 unique values
0 missing
GGI7numeric101 unique values
0 missing
ATSC3snumeric117 unique values
0 missing
ATSC5snumeric126 unique values
0 missing
ATSC1snumeric115 unique values
0 missing
ATSC1enumeric95 unique values
0 missing
Eta_C_Anumeric115 unique values
0 missing
ATSC8snumeric125 unique values
0 missing
Eig03_EA.ri.numeric101 unique values
0 missing
Mpnumeric78 unique values
0 missing
ATS8snumeric120 unique values
0 missing
ATSC1vnumeric110 unique values
0 missing
GATS1vnumeric100 unique values
0 missing
nCpnumeric7 unique values
0 missing
P_VSA_MR_5numeric86 unique values
0 missing
H.047numeric29 unique values
0 missing
ATSC2vnumeric113 unique values
0 missing
ATSC3vnumeric114 unique values
0 missing
ATSC4mnumeric117 unique values
0 missing
ATSC4vnumeric117 unique values
0 missing
ATSC5mnumeric126 unique values
0 missing
ATSC5vnumeric125 unique values
0 missing
ATSC6mnumeric126 unique values
0 missing
Eig03_AEA.ri.numeric98 unique values
0 missing
GGI3numeric76 unique values
0 missing
H.046numeric15 unique values
0 missing
Mvnumeric90 unique values
0 missing
nCsp3numeric25 unique values
0 missing
SpMin3_Bh.s.numeric91 unique values
0 missing
GATS1mnumeric103 unique values
0 missing
GGI10numeric85 unique values
0 missing
O.numeric71 unique values
0 missing
SsCH3numeric71 unique values
0 missing
Eig02_AEA.bo.numeric89 unique values
0 missing
SpMin1_Bh.e.numeric64 unique values
0 missing
ATSC2snumeric117 unique values
0 missing
MPC07numeric92 unique values
0 missing
C.001numeric7 unique values
0 missing
NsCH3numeric8 unique values
0 missing
P_VSA_LogP_1numeric14 unique values
0 missing
BIC0numeric74 unique values
0 missing
nHnumeric43 unique values
0 missing
Eig04_AEA.ri.numeric104 unique values
0 missing
Eig04_EAnumeric96 unique values
0 missing
Eig04_EA.ri.numeric104 unique values
0 missing
SM12_AEA.bo.numeric96 unique values
0 missing
MATS5pnumeric99 unique values
0 missing
GGI8numeric103 unique values
0 missing
ATSC2enumeric103 unique values
0 missing
PW3numeric64 unique values
0 missing
ATSC7enumeric120 unique values
0 missing
JGI2numeric53 unique values
0 missing
MATS1pnumeric87 unique values
0 missing
AMWnumeric106 unique values
0 missing
ATS3pnumeric110 unique values
0 missing
ATS3vnumeric112 unique values
0 missing
ATS4pnumeric115 unique values
0 missing
ATS4vnumeric115 unique values
0 missing
ATS5pnumeric119 unique values
0 missing
ATS5vnumeric120 unique values
0 missing
ATS6enumeric118 unique values
0 missing
ATS6inumeric122 unique values
0 missing
ATSC3inumeric111 unique values
0 missing

62 properties

131
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
8.75
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.72
Mean of means among attributes of the numeric type.
-1.44
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.41
First quartile of standard deviation of attributes of the numeric type.
0.59
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.49
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.52
Number of attributes divided by the number of instances.
0.37
Mean skewness among attributes of the numeric type.
4.2
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
9.7
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.87
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-0.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.68
Second quartile (Median) of standard deviation of attributes of the numeric type.
41.16
Maximum kurtosis among attributes of the numeric type.
-0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
104.59
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
13.88
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
12.68
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.85
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.43
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.58
Third quartile of skewness among attributes of the numeric type.
84.7
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.4
First quartile of kurtosis among attributes of the numeric type.
9.49
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.91
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task