Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5658

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5658

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5658 (TID: 101277), and it has 452 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric258 unique values
0 missing
molecule_id (row identifier)nominal452 unique values
0 missing
MPC07numeric164 unique values
0 missing
StNnumeric27 unique values
0 missing
MPC08numeric189 unique values
0 missing
MPC10numeric211 unique values
0 missing
piPC09numeric351 unique values
0 missing
Qindexnumeric30 unique values
0 missing
MPC09numeric207 unique values
0 missing
nCIRnumeric13 unique values
0 missing
MPC06numeric145 unique values
0 missing
SpMax6_Bh.m.numeric289 unique values
0 missing
TPCnumeric292 unique values
0 missing
piPC08numeric348 unique values
0 missing
SpMax1_Bh.e.numeric199 unique values
0 missing
IC3numeric323 unique values
0 missing
SpMax1_Bh.v.numeric207 unique values
0 missing
nArCNnumeric3 unique values
0 missing
NtNnumeric4 unique values
0 missing
MWC10numeric321 unique values
0 missing
MWC09numeric316 unique values
0 missing
TWCnumeric322 unique values
0 missing
SpMax1_Bh.i.numeric176 unique values
0 missing
D.Dtr09numeric137 unique values
0 missing
SpMaxA_AEA.dm.numeric94 unique values
0 missing
X5vnumeric401 unique values
0 missing
Eig09_AEA.ed.numeric285 unique values
0 missing
SM04_EA.bo.numeric294 unique values
0 missing
CATS2D_05_LLnumeric39 unique values
0 missing
piPC03numeric289 unique values
0 missing
MWC05numeric285 unique values
0 missing
SM06_EA.bo.numeric331 unique values
0 missing
MPC05numeric121 unique values
0 missing
MATS5inumeric268 unique values
0 missing
MPC04numeric87 unique values
0 missing
P_VSA_MR_7numeric89 unique values
0 missing
TRSnumeric20 unique values
0 missing
piPC05numeric323 unique values
0 missing
MWC08numeric313 unique values
0 missing
Eig01_EA.bo.numeric195 unique values
0 missing
SM11_AEA.ri.numeric195 unique values
0 missing
SpDiam_EA.bo.numeric195 unique values
0 missing
SpMax_EA.bo.numeric195 unique values
0 missing
P_VSA_e_3numeric96 unique values
0 missing
Eig10_AEA.ed.numeric258 unique values
0 missing
Eig07_AEA.ed.numeric296 unique values
0 missing
P_VSA_s_5numeric40 unique values
0 missing
SdssCnumeric310 unique values
0 missing
MPC03numeric62 unique values
0 missing
P_VSA_MR_5numeric258 unique values
0 missing
Eig09_AEA.bo.numeric273 unique values
0 missing
piPC02numeric188 unique values
0 missing
SM02_EA.bo.numeric188 unique values
0 missing
ATS3mnumeric311 unique values
0 missing
Eig12_EA.ed.numeric239 unique values
0 missing
SM07_AEA.ri.numeric239 unique values
0 missing
ATS7mnumeric366 unique values
0 missing
X4numeric357 unique values
0 missing
ZM1Madnumeric364 unique values
0 missing
Eig04_EA.bo.numeric282 unique values
0 missing
SM14_AEA.ri.numeric282 unique values
0 missing
D.Dtr10numeric109 unique values
0 missing
SpMin1_Bh.e.numeric153 unique values
0 missing
SpMin1_Bh.i.numeric139 unique values
0 missing
N.074numeric4 unique values
0 missing
GGI5numeric257 unique values
0 missing
ATS3vnumeric304 unique values
0 missing
Eig05_EA.bo.numeric310 unique values
0 missing
SM15_AEA.ri.numeric310 unique values
0 missing

62 properties

452
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
1.06
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.31
Mean of means among attributes of the numeric type.
-0.1
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.3
First quartile of standard deviation of attributes of the numeric type.
0.32
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.15
Number of attributes divided by the number of instances.
0.36
Mean skewness among attributes of the numeric type.
4.57
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
4.98
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.04
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.25
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
14.26
Maximum kurtosis among attributes of the numeric type.
-0.55
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
205.25
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.92
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
7.68
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.38
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.93
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.55
Third quartile of skewness among attributes of the numeric type.
77.74
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.42
First quartile of kurtosis among attributes of the numeric type.
0.92
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.23
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task