Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4653

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4653

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4653 (TID: 11119), and it has 192 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric160 unique values
0 missing
molecule_id (row identifier)nominal192 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
SRW07numeric15 unique values
0 missing
SRW09numeric28 unique values
0 missing
SpDiam_AEA.dm.numeric50 unique values
0 missing
D.Dtr05numeric130 unique values
0 missing
NRSnumeric5 unique values
0 missing
Eta_sh_pnumeric107 unique values
0 missing
nR05numeric4 unique values
0 missing
SRW05numeric4 unique values
0 missing
H.046numeric12 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
nDBnumeric4 unique values
0 missing
NssCH2numeric13 unique values
0 missing
LOCnumeric89 unique values
0 missing
MATS6inumeric146 unique values
0 missing
SssCH2numeric178 unique values
0 missing
X0Anumeric49 unique values
0 missing
HNarnumeric70 unique values
0 missing
Eig04_EA.dm.numeric30 unique values
0 missing
CATS2D_06_ALnumeric13 unique values
0 missing
GNarnumeric76 unique values
0 missing
SpMin3_Bh.i.numeric95 unique values
0 missing
Eig04_AEA.dm.numeric142 unique values
0 missing
CATS2D_03_DLnumeric7 unique values
0 missing
MCDnumeric63 unique values
0 missing
Eig02_AEA.dm.numeric54 unique values
0 missing
Eig06_AEA.dm.numeric126 unique values
0 missing
Eta_betaS_Anumeric68 unique values
0 missing
CATS2D_05_PLnumeric5 unique values
0 missing
MATS5snumeric139 unique values
0 missing
X2Anumeric35 unique values
0 missing
CATS2D_04_DAnumeric3 unique values
0 missing
SpMax2_Bh.e.numeric86 unique values
0 missing
C.008numeric5 unique values
0 missing
CATS2D_06_DAnumeric6 unique values
0 missing
BACnumeric31 unique values
0 missing
Eig04_AEA.bo.numeric131 unique values
0 missing
C.001numeric4 unique values
0 missing
nCpnumeric4 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
Yindexnumeric113 unique values
0 missing
Eig02_EA.dm.numeric29 unique values
0 missing
Eig08_AEA.dm.numeric128 unique values
0 missing
MATS2enumeric138 unique values
0 missing
SsssNnumeric171 unique values
0 missing
nSnumeric3 unique values
0 missing
S.107numeric3 unique values
0 missing
SM06_EA.dm.numeric57 unique values
0 missing
SM08_EA.dm.numeric50 unique values
0 missing
SsCH3numeric67 unique values
0 missing
SpMax2_Bh.v.numeric92 unique values
0 missing
Vindexnumeric85 unique values
0 missing
X4Avnumeric48 unique values
0 missing
Hynumeric92 unique values
0 missing
O.numeric47 unique values
0 missing
SpMax2_Bh.i.numeric93 unique values
0 missing
P_VSA_LogP_1numeric10 unique values
0 missing
GATS6snumeric161 unique values
0 missing
GATS2enumeric149 unique values
0 missing
CATS2D_04_APnumeric2 unique values
0 missing
ATSC6pnumeric179 unique values
0 missing
CATS2D_03_PLnumeric4 unique values
0 missing
Eig09_AEA.dm.numeric112 unique values
0 missing
N.066numeric2 unique values
0 missing

62 properties

192
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.34
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.23
Mean skewness among attributes of the numeric type.
1.53
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.16
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.15
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.7
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.53
Second quartile (Median) of standard deviation of attributes of the numeric type.
42.81
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
151.9
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.74
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
3.79
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-6.12
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.1
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.37
Third quartile of skewness among attributes of the numeric type.
72.5
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0
First quartile of kurtosis among attributes of the numeric type.
1
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.56
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.74
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
4.78
Mean of means among attributes of the numeric type.
-0.76
First quartile of skewness among attributes of the numeric type.
0.14
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task