Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4465

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4465

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4465 (TID: 11204), and it has 71 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric57 unique values
0 missing
molecule_id (row identifier)nominal71 unique values
0 missing
FCFP4_1024b142numeric2 unique values
0 missing
FCFP4_1024b229numeric2 unique values
0 missing
FCFP4_1024b257numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b403numeric2 unique values
0 missing
FCFP4_1024b411numeric2 unique values
0 missing
FCFP4_1024b514numeric2 unique values
0 missing
FCFP4_1024b766numeric2 unique values
0 missing
FCFP4_1024b145numeric2 unique values
0 missing
FCFP4_1024b188numeric2 unique values
0 missing
FCFP4_1024b252numeric2 unique values
0 missing
FCFP4_1024b369numeric2 unique values
0 missing
FCFP4_1024b45numeric2 unique values
0 missing
FCFP4_1024b605numeric2 unique values
0 missing
FCFP4_1024b635numeric2 unique values
0 missing
FCFP4_1024b651numeric2 unique values
0 missing
FCFP4_1024b653numeric2 unique values
0 missing
FCFP4_1024b685numeric2 unique values
0 missing
FCFP4_1024b778numeric2 unique values
0 missing
FCFP4_1024b839numeric2 unique values
0 missing
FCFP4_1024b933numeric2 unique values
0 missing
FCFP4_1024b361numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b603numeric2 unique values
0 missing
FCFP4_1024b658numeric2 unique values
0 missing
FCFP4_1024b714numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b872numeric2 unique values
0 missing
FCFP4_1024b532numeric2 unique values
0 missing
FCFP4_1024b875numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b18numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b48numeric2 unique values
0 missing
FCFP4_1024b507numeric2 unique values
0 missing
FCFP4_1024b442numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b804numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b165numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b4numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric1 unique values
0 missing
FCFP4_1024b1000numeric1 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric1 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric1 unique values
0 missing
FCFP4_1024b1005numeric1 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric1 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric1 unique values
0 missing
FCFP4_1024b101numeric2 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric1 unique values
0 missing
FCFP4_1024b1012numeric1 unique values
0 missing
FCFP4_1024b1013numeric2 unique values
0 missing
FCFP4_1024b1014numeric1 unique values
0 missing
FCFP4_1024b1015numeric1 unique values
0 missing
FCFP4_1024b1016numeric1 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b1019numeric2 unique values
0 missing
FCFP4_1024b102numeric1 unique values
0 missing
FCFP4_1024b1020numeric2 unique values
0 missing
FCFP4_1024b1021numeric1 unique values
0 missing
FCFP4_1024b1022numeric1 unique values
0 missing
FCFP4_1024b1023numeric1 unique values
0 missing
FCFP4_1024b1024numeric1 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b104numeric1 unique values
0 missing
FCFP4_1024b105numeric2 unique values
0 missing
FCFP4_1024b106numeric1 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b109numeric1 unique values
0 missing
FCFP4_1024b11numeric1 unique values
0 missing
FCFP4_1024b110numeric1 unique values
0 missing
FCFP4_1024b111numeric1 unique values
0 missing
FCFP4_1024b112numeric1 unique values
0 missing
FCFP4_1024b113numeric1 unique values
0 missing
FCFP4_1024b114numeric1 unique values
0 missing
FCFP4_1024b115numeric1 unique values
0 missing
FCFP4_1024b116numeric2 unique values
0 missing
FCFP4_1024b117numeric1 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing

62 properties

71
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
7.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.38
Mean of means among attributes of the numeric type.
-0.5
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0
First quartile of standard deviation of attributes of the numeric type.
0.35
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-1.57
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.46
Number of attributes divided by the number of instances.
1.04
Mean skewness among attributes of the numeric type.
0.23
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.29
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.44
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-2.04
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
71
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.71
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.29
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.62
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.95
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
8.43
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.8
Third quartile of skewness among attributes of the numeric type.
1.82
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.8
First quartile of kurtosis among attributes of the numeric type.
0.49
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task