Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5328

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5328

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5328 (TID: 20042), and it has 169 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric110 unique values
0 missing
molecule_id (row identifier)nominal169 unique values
0 missing
FCFP4_1024b937numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b171numeric2 unique values
0 missing
FCFP4_1024b897numeric2 unique values
0 missing
FCFP4_1024b483numeric2 unique values
0 missing
FCFP4_1024b55numeric2 unique values
0 missing
FCFP4_1024b464numeric2 unique values
0 missing
FCFP4_1024b728numeric2 unique values
0 missing
FCFP4_1024b173numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b592numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b387numeric2 unique values
0 missing
FCFP4_1024b71numeric2 unique values
0 missing
FCFP4_1024b1016numeric2 unique values
0 missing
FCFP4_1024b345numeric2 unique values
0 missing
FCFP4_1024b94numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b141numeric2 unique values
0 missing
FCFP4_1024b652numeric2 unique values
0 missing
FCFP4_1024b747numeric2 unique values
0 missing
FCFP4_1024b760numeric2 unique values
0 missing
FCFP4_1024b205numeric2 unique values
0 missing
FCFP4_1024b745numeric2 unique values
0 missing
FCFP4_1024b160numeric2 unique values
0 missing
FCFP4_1024b308numeric2 unique values
0 missing
FCFP4_1024b783numeric2 unique values
0 missing
FCFP4_1024b639numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b16numeric2 unique values
0 missing
FCFP4_1024b44numeric2 unique values
0 missing
FCFP4_1024b879numeric2 unique values
0 missing
FCFP4_1024b938numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric1 unique values
0 missing
FCFP4_1024b1003numeric1 unique values
0 missing
FCFP4_1024b1004numeric1 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric1 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric1 unique values
0 missing
FCFP4_1024b101numeric1 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric1 unique values
0 missing
FCFP4_1024b1012numeric2 unique values
0 missing
FCFP4_1024b1013numeric1 unique values
0 missing

62 properties

169
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
13
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.79
Third quartile of skewness among attributes of the numeric type.
1.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.41
First quartile of kurtosis among attributes of the numeric type.
0.45
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
17.53
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.28
Mean of means among attributes of the numeric type.
0.77
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.08
First quartile of standard deviation of attributes of the numeric type.
0.01
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.31
Number of attributes divided by the number of instances.
2.47
Mean skewness among attributes of the numeric type.
0.19
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.3
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.46
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.92
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
169
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
5.41
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.87
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.31
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-7.37
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task