Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1833

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1833

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1833 (TID: 227), and it has 1238 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric597 unique values
0 missing
molecule_id (row identifier)nominal1238 unique values
0 missing
P_VSA_e_3numeric143 unique values
0 missing
N.numeric106 unique values
0 missing
SpMin3_Bh.e.numeric470 unique values
0 missing
P_VSA_e_5numeric68 unique values
0 missing
SsFnumeric314 unique values
0 missing
SpMin3_Bh.v.numeric420 unique values
0 missing
ATSC7snumeric1154 unique values
0 missing
SpMin3_Bh.p.numeric425 unique values
0 missing
P_VSA_i_3numeric467 unique values
0 missing
P_VSA_MR_5numeric641 unique values
0 missing
ATSC7enumeric653 unique values
0 missing
SpMin3_Bh.i.numeric466 unique values
0 missing
RBFnumeric146 unique values
0 missing
ATS7snumeric850 unique values
0 missing
SpMin3_Bh.m.numeric416 unique values
0 missing
SIC2numeric257 unique values
0 missing
MATS6pnumeric461 unique values
0 missing
RBNnumeric17 unique values
0 missing
NNRSnumeric19 unique values
0 missing
O.numeric90 unique values
0 missing
CIC2numeric681 unique values
0 missing
BIC2numeric244 unique values
0 missing
P_VSA_i_4numeric202 unique values
0 missing
P_VSA_LogP_2numeric282 unique values
0 missing
nCbHnumeric17 unique values
0 missing
nOnumeric12 unique values
0 missing
SpMin5_Bh.p.numeric514 unique values
0 missing
ATSC2inumeric681 unique values
0 missing
SpMax4_Bh.e.numeric575 unique values
0 missing
RCInumeric65 unique values
0 missing
RFDnumeric53 unique values
0 missing
ATSC1pnumeric845 unique values
0 missing
SpMax4_Bh.i.numeric546 unique values
0 missing
C.040numeric4 unique values
0 missing
nBnznumeric5 unique values
0 missing
P_VSA_MR_6numeric721 unique values
0 missing
SpMax4_Bh.v.numeric615 unique values
0 missing
D.Dtr11numeric166 unique values
0 missing
ATSC2pnumeric934 unique values
0 missing
ATS8enumeric800 unique values
0 missing
JGI6numeric36 unique values
0 missing
GATS6pnumeric523 unique values
0 missing
ATS8vnumeric837 unique values
0 missing
MATS6inumeric455 unique values
0 missing
SpMax4_Bh.p.numeric589 unique values
0 missing
GATS6mnumeric618 unique values
0 missing
SpMin8_Bh.s.numeric434 unique values
0 missing
SpMin2_Bh.i.numeric347 unique values
0 missing
Eig04_EA.bo.numeric678 unique values
0 missing
SM14_AEA.ri.numeric678 unique values
0 missing
ATSC3pnumeric1072 unique values
0 missing
ATS2pnumeric607 unique values
0 missing
Spnumeric779 unique values
0 missing
SaaaCnumeric315 unique values
0 missing
BIC1numeric258 unique values
0 missing
H.049numeric5 unique values
0 missing
Hynumeric338 unique values
0 missing
ATS3inumeric673 unique values
0 missing
ATSC3mnumeric1088 unique values
0 missing
SpMin5_Bh.v.numeric503 unique values
0 missing
SpMin6_Bh.s.numeric493 unique values
0 missing
CATS2D_05_DLnumeric10 unique values
0 missing
GATS6inumeric504 unique values
0 missing
Eta_Lnumeric1009 unique values
0 missing
SpMax4_Bh.s.numeric606 unique values
0 missing
ATSC4pnumeric1118 unique values
0 missing
ATSC8pnumeric1102 unique values
0 missing
P_VSA_LogP_6numeric102 unique values
0 missing
SpMax5_Bh.s.numeric666 unique values
0 missing

62 properties

1238
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
15.61
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.99
Third quartile of skewness among attributes of the numeric type.
119.93
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.04
First quartile of kurtosis among attributes of the numeric type.
2.74
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.04
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
30.93
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.06
Mean of means among attributes of the numeric type.
-0.48
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
0.03
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.98
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.06
Number of attributes divided by the number of instances.
1.67
Mean skewness among attributes of the numeric type.
2.88
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
7.08
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.62
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.1
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
395.04
Maximum kurtosis among attributes of the numeric type.
-0.16
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
289.78
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.89
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
6.62
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.95
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task