Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3751

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3751

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3751 (TID: 11254), and it has 32 rows and 59 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

61 features

pXC50 (target)numeric31 unique values
0 missing
molecule_id (row identifier)nominal32 unique values
0 missing
GATS4mnumeric30 unique values
0 missing
AACnumeric27 unique values
0 missing
AECCnumeric21 unique values
0 missing
ALOGPnumeric28 unique values
0 missing
ALOGP2numeric29 unique values
0 missing
AMRnumeric29 unique values
0 missing
AMWnumeric29 unique values
0 missing
ARRnumeric17 unique values
0 missing
ATS1enumeric28 unique values
0 missing
ATS1inumeric29 unique values
0 missing
ATS1mnumeric29 unique values
0 missing
ATS1pnumeric28 unique values
0 missing
ATS1snumeric28 unique values
0 missing
ATS1vnumeric28 unique values
0 missing
ATS2enumeric29 unique values
0 missing
ATS2inumeric29 unique values
0 missing
ATS2mnumeric29 unique values
0 missing
ATS2pnumeric28 unique values
0 missing
ATS2snumeric30 unique values
0 missing
ATS2vnumeric29 unique values
0 missing
ATS3enumeric29 unique values
0 missing
ATS3inumeric29 unique values
0 missing
ATS3mnumeric29 unique values
0 missing
ATS3pnumeric29 unique values
0 missing
ATS3snumeric32 unique values
0 missing
ATS3vnumeric29 unique values
0 missing
ATS4enumeric30 unique values
0 missing
ATS4inumeric31 unique values
0 missing
ATS4mnumeric30 unique values
0 missing
ATS4pnumeric32 unique values
0 missing
ATS4snumeric32 unique values
0 missing
ATS4vnumeric32 unique values
0 missing
ATS5enumeric32 unique values
0 missing
ATS5inumeric32 unique values
0 missing
ATS5mnumeric32 unique values
0 missing
ATS5pnumeric32 unique values
0 missing
ATS5snumeric32 unique values
0 missing
ATS5vnumeric32 unique values
0 missing
ATS6enumeric31 unique values
0 missing
ATS6inumeric32 unique values
0 missing
ATS6mnumeric32 unique values
0 missing
ATS6pnumeric32 unique values
0 missing
ATS6snumeric32 unique values
0 missing
ATS6vnumeric32 unique values
0 missing
ATS7enumeric32 unique values
0 missing
ATS7inumeric32 unique values
0 missing
ATS7mnumeric31 unique values
0 missing
ATS7pnumeric31 unique values
0 missing
ATS7snumeric32 unique values
0 missing
ATS7vnumeric32 unique values
0 missing
ATS8enumeric32 unique values
0 missing
ATS8inumeric32 unique values
0 missing
ATS8mnumeric30 unique values
0 missing
ATS8pnumeric32 unique values
0 missing
ATS8snumeric32 unique values
0 missing
ATS8vnumeric31 unique values
0 missing
ATSC1enumeric25 unique values
0 missing
ATSC1inumeric29 unique values
0 missing
ATSC1mnumeric29 unique values
0 missing

62 properties

32
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
1
Number of nominal attributes.
-0.8
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.54
Mean of means among attributes of the numeric type.
0.2
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.35
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-1.19
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.91
Number of attributes divided by the number of instances.
0.44
Mean skewness among attributes of the numeric type.
4.14
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.59
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.4
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.82
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.49
Second quartile (Median) of standard deviation of attributes of the numeric type.
8.43
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
107.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-1.01
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.36
Percentage of numeric attributes.
5.08
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.53
Minimum skewness among attributes of the numeric type.
1.64
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.64
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.62
Third quartile of skewness among attributes of the numeric type.
35.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.28
First quartile of kurtosis among attributes of the numeric type.
0.66
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.81
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task