Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1947

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1947

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1947 (TID: 271), and it has 576 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric322 unique values
0 missing
molecule_id (row identifier)nominal576 unique values
0 missing
FCFP4_1024b884numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b541numeric2 unique values
0 missing
FCFP4_1024b947numeric2 unique values
0 missing
FCFP4_1024b846numeric2 unique values
0 missing
FCFP4_1024b208numeric2 unique values
0 missing
FCFP4_1024b957numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b422numeric2 unique values
0 missing
FCFP4_1024b289numeric2 unique values
0 missing
FCFP4_1024b870numeric2 unique values
0 missing
FCFP4_1024b75numeric2 unique values
0 missing
FCFP4_1024b178numeric2 unique values
0 missing
FCFP4_1024b6numeric2 unique values
0 missing
FCFP4_1024b9numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b661numeric2 unique values
0 missing
FCFP4_1024b240numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b970numeric2 unique values
0 missing
FCFP4_1024b113numeric2 unique values
0 missing
FCFP4_1024b72numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b922numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b18numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b847numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b253numeric2 unique values
0 missing
FCFP4_1024b280numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b71numeric2 unique values
0 missing
FCFP4_1024b804numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b246numeric2 unique values
0 missing
FCFP4_1024b872numeric2 unique values
0 missing
FCFP4_1024b406numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b122numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b574numeric2 unique values
0 missing
FCFP4_1024b365numeric2 unique values
0 missing
FCFP4_1024b256numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b354numeric2 unique values
0 missing

62 properties

576
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
-0.35
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.42
Mean of means among attributes of the numeric type.
0.6
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.41
First quartile of standard deviation of attributes of the numeric type.
-0.01
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-1.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Number of attributes divided by the number of instances.
0.95
Mean skewness among attributes of the numeric type.
0.3
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.46
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.9
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
8.88
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.11
Percentage of numeric attributes.
0.36
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.25
Minimum skewness among attributes of the numeric type.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.29
Maximum skewness among attributes of the numeric type.
0.26
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.45
Third quartile of skewness among attributes of the numeric type.
1.65
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.61
First quartile of kurtosis among attributes of the numeric type.
0.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.21
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task