Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2896

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2896

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2896 (TID: 11018), and it has 579 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric39 unique values
0 missing
molecule_id (row identifier)nominal579 unique values
0 missing
Chi0_EA.dm.numeric503 unique values
0 missing
ATSC3mnumeric560 unique values
0 missing
Chi1_EA.dm.numeric511 unique values
0 missing
PHInumeric500 unique values
0 missing
Uindexnumeric524 unique values
0 missing
H.047numeric29 unique values
0 missing
ATS8snumeric480 unique values
0 missing
TIEnumeric572 unique values
0 missing
Eig01_AEA.bo.numeric279 unique values
0 missing
SpMax_AEA.bo.numeric279 unique values
0 missing
GATS5snumeric443 unique values
0 missing
GGI6numeric376 unique values
0 missing
AACnumeric337 unique values
0 missing
AECCnumeric450 unique values
0 missing
ALOGPnumeric523 unique values
0 missing
ALOGP2numeric553 unique values
0 missing
AMRnumeric554 unique values
0 missing
AMWnumeric463 unique values
0 missing
ARRnumeric170 unique values
0 missing
ATS1enumeric403 unique values
0 missing
ATS1inumeric406 unique values
0 missing
ATS1mnumeric394 unique values
0 missing
ATS1pnumeric390 unique values
0 missing
ATS1snumeric411 unique values
0 missing
ATS1vnumeric392 unique values
0 missing
ATS2enumeric425 unique values
0 missing
ATS2inumeric422 unique values
0 missing
ATS2mnumeric412 unique values
0 missing
ATS2pnumeric408 unique values
0 missing
ATS2snumeric449 unique values
0 missing
ATS2vnumeric402 unique values
0 missing
ATS3enumeric426 unique values
0 missing
ATS3inumeric427 unique values
0 missing
ATS3mnumeric422 unique values
0 missing
ATS3pnumeric417 unique values
0 missing
ATS3snumeric435 unique values
0 missing
ATS3vnumeric423 unique values
0 missing
ATS4enumeric455 unique values
0 missing
ATS4inumeric452 unique values
0 missing
ATS4mnumeric444 unique values
0 missing
ATS4pnumeric450 unique values
0 missing
ATS4snumeric447 unique values
0 missing
ATS4vnumeric436 unique values
0 missing
ATS5enumeric456 unique values
0 missing
ATS5inumeric461 unique values
0 missing
ATS5mnumeric460 unique values
0 missing
ATS5pnumeric449 unique values
0 missing
ATS5snumeric455 unique values
0 missing
ATS5vnumeric458 unique values
0 missing
ATS6enumeric476 unique values
0 missing
ATS6inumeric467 unique values
0 missing
ATS6mnumeric453 unique values
0 missing
ATS6pnumeric456 unique values
0 missing
ATS6snumeric456 unique values
0 missing
ATS6vnumeric467 unique values
0 missing
ATS7enumeric479 unique values
0 missing
ATS7inumeric482 unique values
0 missing
ATS7mnumeric476 unique values
0 missing
ATS7pnumeric482 unique values
0 missing
ATS7snumeric482 unique values
0 missing
ATS7vnumeric467 unique values
0 missing
ATS8enumeric494 unique values
0 missing
ATS8inumeric504 unique values
0 missing
ATS8mnumeric476 unique values
0 missing
ATS8pnumeric500 unique values
0 missing
ATS8vnumeric479 unique values
0 missing
ATSC1enumeric206 unique values
0 missing
ATSC1inumeric376 unique values
0 missing

62 properties

579
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
2.11
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.25
Third quartile of skewness among attributes of the numeric type.
22.81
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.02
First quartile of kurtosis among attributes of the numeric type.
0.56
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.78
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.44
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.9
Mean of means among attributes of the numeric type.
-0.48
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
0.66
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.12
Number of attributes divided by the number of instances.
-0.19
Mean skewness among attributes of the numeric type.
4.43
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.77
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.24
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.32
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
10.3
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
106.84
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.43
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
5.57
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.29
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task