Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL205

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL205

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL205 (TID: 15), and it has 3666 rows and 72 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

74 features

pXC50 (target)numeric1255 unique values
0 missing
molecule_id (row identifier)nominal3666 unique values
0 missing
CATS2D_02_APnumeric8 unique values
0 missing
N.069numeric5 unique values
0 missing
CATS2D_00_DDnumeric5 unique values
0 missing
CATS2D_00_DPnumeric5 unique values
0 missing
CATS2D_00_PPnumeric5 unique values
0 missing
NsNH2numeric5 unique values
0 missing
S.107numeric5 unique values
0 missing
NaaSnumeric3 unique values
0 missing
Eig01_AEA.bo.numeric557 unique values
0 missing
SpMax_AEA.bo.numeric557 unique values
0 missing
CATS2D_03_APnumeric5 unique values
0 missing
S.110numeric5 unique values
0 missing
NddssSnumeric5 unique values
0 missing
nSnumeric8 unique values
0 missing
P_VSA_m_4numeric135 unique values
0 missing
SpMax1_Bh.m.numeric388 unique values
0 missing
nR05numeric5 unique values
0 missing
SRW05numeric7 unique values
0 missing
P_VSA_i_1numeric110 unique values
0 missing
SpDiam_AEA.dm.numeric721 unique values
0 missing
Eig01_AEA.dm.numeric585 unique values
0 missing
SpMax_AEA.dm.numeric585 unique values
0 missing
C.044numeric4 unique values
0 missing
Eig01_AEA.ed.numeric602 unique values
0 missing
SpMax_AEA.ed.numeric602 unique values
0 missing
SM06_EA.bo.numeric1326 unique values
0 missing
Eig01_EA.ed.numeric855 unique values
0 missing
SM10_AEA.dm.numeric855 unique values
0 missing
SpMax_EA.ed.numeric855 unique values
0 missing
Eig01_EAnumeric588 unique values
0 missing
SM09_AEA.bo.numeric588 unique values
0 missing
SpMax_EAnumeric588 unique values
0 missing
Eig01_EA.bo.numeric535 unique values
0 missing
SM11_AEA.ri.numeric535 unique values
0 missing
SpMax_EA.bo.numeric535 unique values
0 missing
nSO2Nnumeric5 unique values
0 missing
Eta_sh_xnumeric282 unique values
0 missing
SpDiam_EAnumeric635 unique values
0 missing
SpDiam_EA.bo.numeric596 unique values
0 missing
SpDiam_EA.ed.numeric1209 unique values
0 missing
CATS2D_03_PLnumeric11 unique values
0 missing
O.058numeric14 unique values
0 missing
SddssSnumeric1374 unique values
0 missing
NdOnumeric14 unique values
0 missing
nHMnumeric8 unique values
0 missing
SpMax2_Bh.m.numeric815 unique values
0 missing
ATSC1snumeric3167 unique values
0 missing
SpMax1_Bh.s.numeric193 unique values
0 missing
SM15_EA.bo.numeric1299 unique values
0 missing
SM14_EA.bo.numeric1317 unique values
0 missing
P_VSA_s_1numeric33 unique values
0 missing
SM10_EA.bo.numeric1357 unique values
0 missing
SM13_EA.bo.numeric1302 unique values
0 missing
SpMax1_Bh.p.numeric478 unique values
0 missing
P_VSA_LogP_3numeric493 unique values
0 missing
IVDEnumeric450 unique values
0 missing
SM12_EA.bo.numeric1352 unique values
0 missing
D.Dtr05numeric966 unique values
0 missing
SM11_EA.bo.numeric1331 unique values
0 missing
Eig01_AEA.ri.numeric644 unique values
0 missing
SpMax_AEA.ri.numeric644 unique values
0 missing
P_VSA_MR_7numeric303 unique values
0 missing
MAXDNnumeric1427 unique values
0 missing
SM03_EAnumeric48 unique values
0 missing
ATSC2snumeric3379 unique values
0 missing
nThiazolesnumeric3 unique values
0 missing
CATS2D_02_DAnumeric14 unique values
0 missing
Eig02_EA.bo.numeric1015 unique values
0 missing
SM12_AEA.ri.numeric1015 unique values
0 missing
SpDiam_AEA.bo.numeric812 unique values
0 missing
SM07_EA.bo.numeric1302 unique values
0 missing
SM13_EA.ed.numeric1509 unique values
0 missing

62 properties

3666
Number of instances (rows) of the dataset.
74
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
73
Number of numeric attributes.
1
Number of nominal attributes.
5.27
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.53
Third quartile of skewness among attributes of the numeric type.
107.62
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
3.26
First quartile of kurtosis among attributes of the numeric type.
1.75
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.53
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
19.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.31
Mean of means among attributes of the numeric type.
-2.69
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.48
First quartile of standard deviation of attributes of the numeric type.
-0.18
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
14.15
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.02
Number of attributes divided by the number of instances.
-0.63
Mean skewness among attributes of the numeric type.
4.58
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
5.6
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.42
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.5
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.69
Second quartile (Median) of standard deviation of attributes of the numeric type.
85.02
Maximum kurtosis among attributes of the numeric type.
-4.44
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
115.97
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
26.95
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.65
Percentage of numeric attributes.
11.56
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-7.86
Minimum skewness among attributes of the numeric type.
1.35
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task