Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075167

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075167

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075167 (TID: 103106), and it has 664 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric69 unique values
0 missing
molecule_id (row identifier)nominal664 unique values
0 missing
CATS2D_04_DLnumeric14 unique values
0 missing
CATS2D_08_DPnumeric4 unique values
0 missing
CATS2D_05_DLnumeric15 unique values
0 missing
CATS2D_02_DDnumeric3 unique values
0 missing
nCONNnumeric3 unique values
0 missing
SssNHnumeric441 unique values
0 missing
NssNHnumeric5 unique values
0 missing
CATS2D_02_DAnumeric7 unique values
0 missing
C.041numeric3 unique values
0 missing
CATS2D_08_DDnumeric3 unique values
0 missing
P_VSA_s_5numeric54 unique values
0 missing
Hynumeric352 unique values
0 missing
H.050numeric7 unique values
0 missing
nHDonnumeric7 unique values
0 missing
N.072numeric5 unique values
0 missing
Eta_betaPnumeric49 unique values
0 missing
Yindexnumeric371 unique values
0 missing
CATS2D_05_PLnumeric6 unique values
0 missing
nArNH2numeric3 unique values
0 missing
SM08_EA.dm.numeric252 unique values
0 missing
SM10_EA.dm.numeric208 unique values
0 missing
SM06_EA.dm.numeric286 unique values
0 missing
SsNH2numeric213 unique values
0 missing
N.069numeric3 unique values
0 missing
Xindexnumeric244 unique values
0 missing
Vindexnumeric197 unique values
0 missing
P_VSA_e_3numeric260 unique values
0 missing
P_VSA_i_4numeric328 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
CATS2D_08_LLnumeric23 unique values
0 missing
MATS4inumeric329 unique values
0 missing
SpDiam_EA.dm.numeric93 unique values
0 missing
SaaSnumeric108 unique values
0 missing
nCarnumeric24 unique values
0 missing
LLS_01numeric7 unique values
0 missing
SM12_EA.dm.numeric194 unique values
0 missing
SM14_EA.dm.numeric180 unique values
0 missing
SM11_EA.dm.numeric79 unique values
0 missing
SM13_EA.dm.numeric76 unique values
0 missing
SM15_EA.dm.numeric76 unique values
0 missing
SpMax2_Bh.v.numeric264 unique values
0 missing
nThiophenesnumeric3 unique values
0 missing
DECCnumeric482 unique values
0 missing
P_VSA_m_2numeric621 unique values
0 missing
P_VSA_LogP_2numeric205 unique values
0 missing
CATS2D_02_DLnumeric11 unique values
0 missing
CATS2D_02_APnumeric4 unique values
0 missing
CATS2D_09_LLnumeric19 unique values
0 missing
SpMax2_Bh.e.numeric245 unique values
0 missing
SpMax2_Bh.p.numeric267 unique values
0 missing
SpMax2_Bh.m.numeric302 unique values
0 missing
MSDnumeric573 unique values
0 missing
SM05_EA.dm.numeric90 unique values
0 missing
P_VSA_MR_6numeric567 unique values
0 missing
IDEnumeric487 unique values
0 missing
SM07_EA.dm.numeric92 unique values
0 missing
nCsp2numeric26 unique values
0 missing
Eig01_EA.dm.numeric83 unique values
0 missing
SpMax_EA.dm.numeric83 unique values
0 missing
SM09_EA.dm.numeric84 unique values
0 missing
SAdonnumeric84 unique values
0 missing
SpMax3_Bh.p.numeric366 unique values
0 missing
HVcpxnumeric469 unique values
0 missing
AECCnumeric501 unique values
0 missing
Chi1_EA.dm.numeric585 unique values
0 missing
SpMax3_Bh.v.numeric363 unique values
0 missing
SpMax1_Bh.m.numeric282 unique values
0 missing
CATS2D_06_DLnumeric13 unique values
0 missing
nBMnumeric28 unique values
0 missing

62 properties

664
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.11
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.44
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.79
Mean skewness among attributes of the numeric type.
3.25
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.78
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.8
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.54
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
28.04
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
194.04
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.67
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
5.21
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.69
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.05
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.26
Third quartile of skewness among attributes of the numeric type.
46.13
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.07
First quartile of kurtosis among attributes of the numeric type.
4.22
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.67
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.59
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.41
Mean of means among attributes of the numeric type.
0.29
First quartile of skewness among attributes of the numeric type.
0.25
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.44
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task