Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3607

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3607

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3607 (TID: 11762), and it has 93 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric58 unique values
0 missing
molecule_id (row identifier)nominal93 unique values
0 missing
CATS2D_06_DLnumeric7 unique values
0 missing
CATS2D_06_NLnumeric5 unique values
0 missing
N.numeric51 unique values
0 missing
CATS2D_03_NLnumeric5 unique values
0 missing
CATS2D_05_NLnumeric5 unique values
0 missing
GATS4enumeric75 unique values
0 missing
nCrtnumeric3 unique values
0 missing
nPyrrolidinesnumeric2 unique values
0 missing
CATS2D_07_NLnumeric5 unique values
0 missing
CATS2D_02_LLnumeric22 unique values
0 missing
CATS2D_04_LLnumeric17 unique values
0 missing
CATS2D_07_DLnumeric8 unique values
0 missing
GATS6snumeric77 unique values
0 missing
BLTA96numeric73 unique values
0 missing
BLTD48numeric73 unique values
0 missing
BLTF96numeric72 unique values
0 missing
MLOGPnumeric73 unique values
0 missing
C.015numeric3 unique values
0 missing
NdCH2numeric3 unique values
0 missing
nR.Cpnumeric3 unique values
0 missing
SdCH2numeric26 unique values
0 missing
P_VSA_e_3numeric21 unique values
0 missing
SpDiam_EA.ri.numeric63 unique values
0 missing
CATS2D_08_ALnumeric7 unique values
0 missing
C.003numeric4 unique values
0 missing
GATS4snumeric83 unique values
0 missing
NsssCHnumeric5 unique values
0 missing
ATSC5vnumeric88 unique values
0 missing
ATSC6vnumeric88 unique values
0 missing
CATS2D_03_LLnumeric19 unique values
0 missing
CATS2D_05_LLnumeric17 unique values
0 missing
CATS2D_08_DLnumeric8 unique values
0 missing
GATS2snumeric69 unique values
0 missing
MATS4snumeric76 unique values
0 missing
Hynumeric63 unique values
0 missing
SpMin1_Bh.s.numeric58 unique values
0 missing
C.017numeric3 unique values
0 missing
nR.Ctnumeric3 unique values
0 missing
Eig01_EA.ri.numeric57 unique values
0 missing
SpMax_EA.ri.numeric57 unique values
0 missing
ATS5enumeric85 unique values
0 missing
ATS5inumeric87 unique values
0 missing
ATS6inumeric82 unique values
0 missing
ATSC4vnumeric87 unique values
0 missing
CATS2D_01_LLnumeric21 unique values
0 missing
MATS4enumeric78 unique values
0 missing
nCtnumeric4 unique values
0 missing
SssNHnumeric47 unique values
0 missing
Hypertens.50numeric2 unique values
0 missing
CATS2D_07_ALnumeric7 unique values
0 missing
ATSC3pnumeric83 unique values
0 missing
ATSC4pnumeric88 unique values
0 missing
nNnumeric6 unique values
0 missing
CATS2D_04_DAnumeric3 unique values
0 missing
CATS2D_04_NLnumeric4 unique values
0 missing
N.067numeric2 unique values
0 missing
nRNHRnumeric2 unique values
0 missing
SpMin3_Bh.e.numeric77 unique values
0 missing
SsOHnumeric84 unique values
0 missing
ATSC5inumeric82 unique values
0 missing
SM13_EA.ri.numeric84 unique values
0 missing
SM14_EA.ri.numeric80 unique values
0 missing
SM15_EA.ri.numeric83 unique values
0 missing
CATS2D_00_DDnumeric3 unique values
0 missing

62 properties

93
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.71
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.69
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.38
Mean skewness among attributes of the numeric type.
1.6
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.15
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.53
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.72
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
5.33
Maximum kurtosis among attributes of the numeric type.
-0.8
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
42.51
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.26
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
4.8
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.66
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.62
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.99
Third quartile of skewness among attributes of the numeric type.
25.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.25
First quartile of kurtosis among attributes of the numeric type.
2.25
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.43
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.37
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
3.81
Mean of means among attributes of the numeric type.
-0.28
First quartile of skewness among attributes of the numeric type.
-0.38
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.49
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task