Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5767

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5767

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5767 (TID: 101546), and it has 101 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric96 unique values
0 missing
molecule_id (row identifier)nominal101 unique values
0 missing
GGI9numeric54 unique values
0 missing
SpDiam_AEA.bo.numeric63 unique values
0 missing
ZM1Madnumeric83 unique values
0 missing
SsOHnumeric31 unique values
0 missing
X3vnumeric98 unique values
0 missing
NsOHnumeric4 unique values
0 missing
SpMax2_Bh.m.numeric84 unique values
0 missing
X4vnumeric96 unique values
0 missing
SpMax4_Bh.m.numeric84 unique values
0 missing
ATS1mnumeric79 unique values
0 missing
SM03_EA.bo.numeric40 unique values
0 missing
ZM2Madnumeric90 unique values
0 missing
SpMax3_Bh.m.numeric87 unique values
0 missing
nArOHnumeric3 unique values
0 missing
O.057numeric3 unique values
0 missing
SM04_EA.bo.numeric75 unique values
0 missing
ATS2snumeric89 unique values
0 missing
X2vnumeric98 unique values
0 missing
ATS2mnumeric81 unique values
0 missing
X2solnumeric84 unique values
0 missing
CATS2D_04_DLnumeric11 unique values
0 missing
SpMax1_Bh.i.numeric56 unique values
0 missing
SpMax1_Bh.v.numeric53 unique values
0 missing
GATS1snumeric79 unique values
0 missing
X1vnumeric90 unique values
0 missing
X5vnumeric99 unique values
0 missing
X4solnumeric84 unique values
0 missing
SpMax1_Bh.p.numeric51 unique values
0 missing
XMODnumeric90 unique values
0 missing
SpMax1_Bh.e.numeric53 unique values
0 missing
SpDiam_AEA.ri.numeric69 unique values
0 missing
CATS2D_02_APnumeric5 unique values
0 missing
N.069numeric3 unique values
0 missing
P_VSA_i_1numeric12 unique values
0 missing
P_VSA_s_1numeric8 unique values
0 missing
CATS2D_06_DDnumeric2 unique values
0 missing
CATS2D_06_DPnumeric3 unique values
0 missing
SpMax3_Bh.i.numeric77 unique values
0 missing
ATSC8enumeric95 unique values
0 missing
nNnumeric6 unique values
0 missing
PDInumeric69 unique values
0 missing
P_VSA_e_3numeric26 unique values
0 missing
P_VSA_i_4numeric30 unique values
0 missing
SM06_AEA.ed.numeric77 unique values
0 missing
SM05_EA.bo.numeric68 unique values
0 missing
P_VSA_s_3numeric74 unique values
0 missing
IACnumeric78 unique values
0 missing
TIC0numeric78 unique values
0 missing
X3solnumeric84 unique values
0 missing
N.numeric42 unique values
0 missing
SpMin1_Bh.i.numeric43 unique values
0 missing
GGI6numeric57 unique values
0 missing
MATS1enumeric78 unique values
0 missing
Eig01_AEA.dm.numeric30 unique values
0 missing
MAXDNnumeric95 unique values
0 missing
NddssSnumeric4 unique values
0 missing
nSnumeric4 unique values
0 missing
S.110numeric4 unique values
0 missing
SddssSnumeric73 unique values
0 missing
SpDiam_AEA.dm.numeric30 unique values
0 missing
SpMax1_Bh.s.numeric18 unique values
0 missing
SpMax_AEA.dm.numeric30 unique values
0 missing
Eig01_EA.bo.numeric34 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing

62 properties

101
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.65
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.73
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.14
Mean skewness among attributes of the numeric type.
4.19
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.96
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.16
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.04
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.58
Second quartile (Median) of standard deviation of attributes of the numeric type.
6.91
Maximum kurtosis among attributes of the numeric type.
-3.41
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
187.23
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.88
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
7.21
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.76
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.69
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.32
Third quartile of skewness among attributes of the numeric type.
64.82
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.15
First quartile of kurtosis among attributes of the numeric type.
2.47
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.97
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.03
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
14.21
Mean of means among attributes of the numeric type.
-0.92
First quartile of skewness among attributes of the numeric type.
0.21
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task