Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4973

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4973

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4973 (TID: 12640), and it has 80 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric50 unique values
0 missing
molecule_id (row identifier)nominal80 unique values
0 missing
ATSC3snumeric75 unique values
0 missing
CATS2D_06_ALnumeric14 unique values
0 missing
P_VSA_LogP_2numeric18 unique values
0 missing
C.017numeric2 unique values
0 missing
C.019numeric2 unique values
0 missing
C.020numeric2 unique values
0 missing
CATS2D_02_APnumeric2 unique values
0 missing
CATS2D_03_DAnumeric4 unique values
0 missing
CATS2D_04_AAnumeric3 unique values
0 missing
CATS2D_04_DNnumeric3 unique values
0 missing
CATS2D_05_DDnumeric3 unique values
0 missing
CATS2D_06_APnumeric3 unique values
0 missing
JGI1numeric46 unique values
0 missing
MATS1snumeric50 unique values
0 missing
nCconjnumeric4 unique values
0 missing
NdssCnumeric4 unique values
0 missing
nR.Csnumeric2 unique values
0 missing
nR.Ctnumeric2 unique values
0 missing
NRSnumeric5 unique values
0 missing
StNnumeric17 unique values
0 missing
StsCnumeric17 unique values
0 missing
ATSC1enumeric56 unique values
0 missing
ATSC2snumeric74 unique values
0 missing
CATS2D_04_ALnumeric12 unique values
0 missing
Eig15_AEA.ri.numeric49 unique values
0 missing
Eta_B_Anumeric21 unique values
0 missing
Eta_sh_pnumeric59 unique values
0 missing
JGTnumeric62 unique values
0 missing
MATS2snumeric69 unique values
0 missing
P_VSA_s_6numeric28 unique values
0 missing
SpMax3_Bh.v.numeric61 unique values
0 missing
P_VSA_m_2numeric62 unique values
0 missing
P_VSA_e_5numeric14 unique values
0 missing
P_VSA_LogP_4numeric11 unique values
0 missing
N.072numeric2 unique values
0 missing
HVcpxnumeric69 unique values
0 missing
N.074numeric2 unique values
0 missing
nCspnumeric2 unique values
0 missing
nRCNnumeric2 unique values
0 missing
nTBnumeric2 unique values
0 missing
NtNnumeric2 unique values
0 missing
NtsCnumeric2 unique values
0 missing
SpMax3_Bh.p.numeric56 unique values
0 missing
Eig03_EA.bo.numeric63 unique values
0 missing
P_VSA_e_2numeric62 unique values
0 missing
SM13_AEA.ri.numeric63 unique values
0 missing
SpMin3_Bh.e.numeric55 unique values
0 missing
SpMin3_Bh.i.numeric56 unique values
0 missing
SpMin3_Bh.v.numeric57 unique values
0 missing
NssNHnumeric2 unique values
0 missing
C.038numeric2 unique values
0 missing
CATS2D_02_ALnumeric9 unique values
0 missing
CATS2D_02_DAnumeric3 unique values
0 missing
CATS2D_02_DNnumeric3 unique values
0 missing
CATS2D_03_DDnumeric3 unique values
0 missing
CATS2D_05_PLnumeric4 unique values
0 missing
Eig05_EA.dm.numeric11 unique values
0 missing
nRCOnumeric2 unique values
0 missing
SpMax2_Bh.s.numeric13 unique values
0 missing
SssOnumeric25 unique values
0 missing
CATS2D_01_ANnumeric3 unique values
0 missing
CATS2D_01_DNnumeric3 unique values
0 missing

62 properties

80
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.8
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.61
Mean skewness among attributes of the numeric type.
0.83
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.97
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.56
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.95
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.46
Second quartile (Median) of standard deviation of attributes of the numeric type.
12.52
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
158.93
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.86
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
2.82
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.44
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.5
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.55
Third quartile of skewness among attributes of the numeric type.
65.09
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.64
First quartile of kurtosis among attributes of the numeric type.
1.19
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.2
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.71
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.86
Mean of means among attributes of the numeric type.
-0.4
First quartile of skewness among attributes of the numeric type.
0.2
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.39
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task