Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4666

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4666

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4666 (TID: 100828), and it has 138 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric78 unique values
0 missing
molecule_id (row identifier)nominal138 unique values
0 missing
ATS7vnumeric128 unique values
0 missing
SpMin5_Bh.m.numeric102 unique values
0 missing
ATSC6pnumeric135 unique values
0 missing
ATS8vnumeric131 unique values
0 missing
ATS8pnumeric130 unique values
0 missing
SpMin5_Bh.s.numeric101 unique values
0 missing
ATS8enumeric129 unique values
0 missing
SpMin5_Bh.v.numeric104 unique values
0 missing
ATSC8inumeric131 unique values
0 missing
ATSC6inumeric126 unique values
0 missing
ATS8inumeric133 unique values
0 missing
LOCnumeric104 unique values
0 missing
SpMin6_Bh.i.numeric103 unique values
0 missing
SpMin5_Bh.p.numeric99 unique values
0 missing
ATS4vnumeric128 unique values
0 missing
SpMin6_Bh.s.numeric105 unique values
0 missing
SpMin6_Bh.v.numeric106 unique values
0 missing
X1Kupnumeric128 unique values
0 missing
SpMin6_Bh.m.numeric101 unique values
0 missing
ATSC5inumeric130 unique values
0 missing
X1MulPernumeric130 unique values
0 missing
X1Pernumeric130 unique values
0 missing
ATS7snumeric124 unique values
0 missing
TIC5numeric120 unique values
0 missing
ATSC6vnumeric135 unique values
0 missing
SpMin6_Bh.p.numeric96 unique values
0 missing
ATSC8vnumeric134 unique values
0 missing
TIC4numeric122 unique values
0 missing
DLS_03numeric3 unique values
0 missing
CATS2D_09_LLnumeric28 unique values
0 missing
ATS1pnumeric110 unique values
0 missing
ATS1vnumeric108 unique values
0 missing
BIC1numeric103 unique values
0 missing
CATS2D_02_LLnumeric35 unique values
0 missing
CATS2D_04_LLnumeric33 unique values
0 missing
SIC0numeric89 unique values
0 missing
SIC1numeric102 unique values
0 missing
X4Anumeric34 unique values
0 missing
X4vnumeric132 unique values
0 missing
X5Anumeric30 unique values
0 missing
SpMax6_Bh.p.numeric102 unique values
0 missing
CIC0numeric105 unique values
0 missing
ISIZnumeric39 unique values
0 missing
nATnumeric39 unique values
0 missing
ON0Vnumeric104 unique values
0 missing
VvdwMGnumeric113 unique values
0 missing
Vxnumeric113 unique values
0 missing
TIC3numeric125 unique values
0 missing
ALOGPnumeric130 unique values
0 missing
ALOGP2numeric130 unique values
0 missing
ATSC3pnumeric132 unique values
0 missing
Svnumeric109 unique values
0 missing
nBTnumeric44 unique values
0 missing
AACnumeric104 unique values
0 missing
ATSC5vnumeric133 unique values
0 missing
BIC0numeric86 unique values
0 missing
BLTA96numeric104 unique values
0 missing
BLTD48numeric104 unique values
0 missing
BLTF96numeric104 unique values
0 missing
CATS2D_01_LLnumeric28 unique values
0 missing
Eig01_AEA.ed.numeric81 unique values
0 missing
Eig01_AEA.ri.numeric82 unique values
0 missing
Eig01_EAnumeric81 unique values
0 missing
Eig01_EA.ed.numeric85 unique values
0 missing

62 properties

138
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.48
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.86
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.09
Mean skewness among attributes of the numeric type.
4.13
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
8.64
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.14
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.48
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.72
Second quartile (Median) of standard deviation of attributes of the numeric type.
1.7
Maximum kurtosis among attributes of the numeric type.
-4.97
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
491.37
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.44
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
13.43
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.39
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.96
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.27
Third quartile of skewness among attributes of the numeric type.
79.47
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.17
First quartile of kurtosis among attributes of the numeric type.
7.85
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.48
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.73
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
34.48
Mean of means among attributes of the numeric type.
-0.43
First quartile of skewness among attributes of the numeric type.
0.45
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task