Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293222

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293222

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293222 (TID: 103655), and it has 346 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric198 unique values
0 missing
molecule_id (row identifier)nominal346 unique values
0 missing
SpMin4_Bh.s.numeric234 unique values
0 missing
X1Pernumeric312 unique values
0 missing
ATSC2pnumeric320 unique values
0 missing
X1Kupnumeric331 unique values
0 missing
X1MulPernumeric311 unique values
0 missing
ATS4inumeric296 unique values
0 missing
ATSC1mnumeric314 unique values
0 missing
SpMin5_Bh.p.numeric241 unique values
0 missing
SpMin6_Bh.p.numeric230 unique values
0 missing
SpMin6_Bh.s.numeric217 unique values
0 missing
SpMin6_Bh.v.numeric221 unique values
0 missing
SssCH2numeric262 unique values
0 missing
ATS2enumeric270 unique values
0 missing
Sinumeric305 unique values
0 missing
ATS1enumeric260 unique values
0 missing
ATS1inumeric261 unique values
0 missing
ATS3enumeric281 unique values
0 missing
ATS3inumeric278 unique values
0 missing
ATSC3vnumeric331 unique values
0 missing
nBTnumeric62 unique values
0 missing
ATSC1pnumeric302 unique values
0 missing
SpMax6_Bh.v.numeric233 unique values
0 missing
ATS2inumeric275 unique values
0 missing
SpMin4_Bh.m.numeric229 unique values
0 missing
MSDnumeric291 unique values
0 missing
ARRnumeric100 unique values
0 missing
ATSC1vnumeric303 unique values
0 missing
ATSC2vnumeric318 unique values
0 missing
C.numeric117 unique values
0 missing
C.002numeric14 unique values
0 missing
CIC0numeric274 unique values
0 missing
DBInumeric51 unique values
0 missing
DLS_07numeric3 unique values
0 missing
Eig01_EA.bo.numeric171 unique values
0 missing
Eta_beta_Anumeric204 unique values
0 missing
Eta_betaP_Anumeric172 unique values
0 missing
Eta_C_Anumeric262 unique values
0 missing
Eta_FL_Anumeric131 unique values
0 missing
Eta_Lnumeric328 unique values
0 missing
Eta_L_Anumeric134 unique values
0 missing
GATS1mnumeric215 unique values
0 missing
GATS1pnumeric251 unique values
0 missing
GATS1vnumeric235 unique values
0 missing
GATS2inumeric221 unique values
0 missing
GATS2pnumeric217 unique values
0 missing
GATS2vnumeric211 unique values
0 missing
H.numeric148 unique values
0 missing
H.046numeric20 unique values
0 missing
LOCnumeric189 unique values
0 missing
Mpnumeric120 unique values
0 missing
Mvnumeric136 unique values
0 missing
NaasCnumeric12 unique values
0 missing
nABnumeric14 unique values
0 missing
nBMnumeric22 unique values
0 missing
nCarnumeric19 unique values
0 missing
nCsnumeric14 unique values
0 missing
nCsp3numeric20 unique values
0 missing
nHnumeric37 unique values
0 missing
NssCH2numeric18 unique values
0 missing
ON1Vnumeric304 unique values
0 missing
PCDnumeric288 unique values
0 missing
PCRnumeric196 unique values
0 missing
PDInumeric133 unique values
0 missing
piPC05numeric263 unique values
0 missing
piPC06numeric270 unique values
0 missing
piPC07numeric278 unique values
0 missing
piPC08numeric294 unique values
0 missing

62 properties

346
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
3.39
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.65
Third quartile of skewness among attributes of the numeric type.
16.15
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.74
First quartile of kurtosis among attributes of the numeric type.
3.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.05
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.67
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.85
Mean of means among attributes of the numeric type.
-0.57
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.
0.36
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.82
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.2
Number of attributes divided by the number of instances.
0.52
Mean skewness among attributes of the numeric type.
3.98
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.37
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.6
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.57
Second quartile (Median) of standard deviation of attributes of the numeric type.
20.1
Maximum kurtosis among attributes of the numeric type.
0.23
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
53.65
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
6.41
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.5
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task