Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3227

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3227

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3227 (TID: 11280), and it has 1584 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric693 unique values
0 missing
molecule_id (row identifier)nominal1584 unique values
0 missing
FCFP4_1024b539numeric2 unique values
0 missing
FCFP4_1024b192numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b1016numeric2 unique values
0 missing
FCFP4_1024b43numeric2 unique values
0 missing
FCFP4_1024b360numeric2 unique values
0 missing
FCFP4_1024b1008numeric2 unique values
0 missing
FCFP4_1024b409numeric2 unique values
0 missing
FCFP4_1024b816numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b143numeric2 unique values
0 missing
FCFP4_1024b490numeric2 unique values
0 missing
FCFP4_1024b760numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b434numeric2 unique values
0 missing
FCFP4_1024b574numeric2 unique values
0 missing
FCFP4_1024b859numeric2 unique values
0 missing
FCFP4_1024b492numeric2 unique values
0 missing
FCFP4_1024b446numeric2 unique values
0 missing
FCFP4_1024b330numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b768numeric2 unique values
0 missing
FCFP4_1024b883numeric2 unique values
0 missing
FCFP4_1024b709numeric2 unique values
0 missing
FCFP4_1024b639numeric2 unique values
0 missing
FCFP4_1024b65numeric2 unique values
0 missing
FCFP4_1024b353numeric2 unique values
0 missing
FCFP4_1024b461numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b855numeric2 unique values
0 missing
FCFP4_1024b908numeric2 unique values
0 missing
FCFP4_1024b523numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b160numeric2 unique values
0 missing
FCFP4_1024b513numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b416numeric2 unique values
0 missing
FCFP4_1024b948numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b746numeric2 unique values
0 missing
FCFP4_1024b993numeric2 unique values
0 missing
FCFP4_1024b354numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b764numeric2 unique values
0 missing
FCFP4_1024b451numeric2 unique values
0 missing
FCFP4_1024b236numeric2 unique values
0 missing
FCFP4_1024b402numeric2 unique values
0 missing
FCFP4_1024b344numeric2 unique values
0 missing
FCFP4_1024b288numeric2 unique values
0 missing
FCFP4_1024b999numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b793numeric2 unique values
0 missing
FCFP4_1024b697numeric2 unique values
0 missing
FCFP4_1024b476numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b643numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b141numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b336numeric2 unique values
0 missing
FCFP4_1024b675numeric2 unique values
0 missing
FCFP4_1024b551numeric2 unique values
0 missing
FCFP4_1024b372numeric2 unique values
0 missing
FCFP4_1024b17numeric2 unique values
0 missing
FCFP4_1024b595numeric2 unique values
0 missing
FCFP4_1024b848numeric2 unique values
0 missing
FCFP4_1024b452numeric2 unique values
0 missing
FCFP4_1024b913numeric2 unique values
0 missing
FCFP4_1024b956numeric2 unique values
0 missing
FCFP4_1024b685numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b555numeric2 unique values
0 missing
FCFP4_1024b428numeric2 unique values
0 missing
FCFP4_1024b68numeric2 unique values
0 missing
FCFP4_1024b666numeric2 unique values
0 missing
FCFP4_1024b917numeric2 unique values
0 missing
FCFP4_1024b203numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b583numeric2 unique values
0 missing
FCFP4_1024b337numeric2 unique values
0 missing
FCFP4_1024b333numeric2 unique values
0 missing
FCFP4_1024b670numeric2 unique values
0 missing
FCFP4_1024b853numeric2 unique values
0 missing
FCFP4_1024b730numeric2 unique values
0 missing
FCFP4_1024b699numeric2 unique values
0 missing
FCFP4_1024b601numeric2 unique values
0 missing
FCFP4_1024b106numeric2 unique values
0 missing
FCFP4_1024b871numeric2 unique values
0 missing
FCFP4_1024b568numeric2 unique values
0 missing
FCFP4_1024b52numeric2 unique values
0 missing
FCFP4_1024b1numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing

62 properties

1584
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
39.8
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.83
Third quartile of skewness among attributes of the numeric type.
1.12
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.82
First quartile of kurtosis among attributes of the numeric type.
0.34
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.02
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
51.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.2
Mean of means among attributes of the numeric type.
1.76
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.14
First quartile of standard deviation of attributes of the numeric type.
0.15
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
11.43
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Number of attributes divided by the number of instances.
4.61
Mean skewness among attributes of the numeric type.
0.07
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.26
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.33
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.24
Second quartile (Median) of standard deviation of attributes of the numeric type.
1584
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.07
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
46.27
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.17
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-7.06
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task