Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4941

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4941

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4941 (TID: 10201), and it has 101 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric82 unique values
0 missing
molecule_id (row identifier)nominal101 unique values
0 missing
O.numeric40 unique values
0 missing
C.034numeric2 unique values
0 missing
C.042numeric2 unique values
0 missing
C.043numeric2 unique values
0 missing
CATS2D_02_AAnumeric4 unique values
0 missing
CATS2D_04_AAnumeric4 unique values
0 missing
CATS2D_04_APnumeric4 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
nOxolanesnumeric2 unique values
0 missing
ATSC2enumeric70 unique values
0 missing
CATS2D_03_AAnumeric5 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
CATS2D_04_PLnumeric2 unique values
0 missing
NaasNnumeric2 unique values
0 missing
nPyrrolesnumeric2 unique values
0 missing
SaasNnumeric31 unique values
0 missing
SssOnumeric34 unique values
0 missing
CATS2D_05_DAnumeric4 unique values
0 missing
CATS2D_06_DAnumeric4 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
P_VSA_LogP_4numeric12 unique values
0 missing
nRORnumeric2 unique values
0 missing
NssOnumeric3 unique values
0 missing
O.059numeric2 unique values
0 missing
N.075numeric5 unique values
0 missing
NaaNnumeric5 unique values
0 missing
SaaNnumeric73 unique values
0 missing
GATS3enumeric77 unique values
0 missing
H.049numeric4 unique values
0 missing
CATS2D_03_DPnumeric2 unique values
0 missing
P_VSA_s_5numeric6 unique values
0 missing
C.033numeric3 unique values
0 missing
SpMin1_Bh.p.numeric21 unique values
0 missing
ATSC4enumeric80 unique values
0 missing
P_VSA_LogP_5numeric30 unique values
0 missing
CATS2D_02_DLnumeric5 unique values
0 missing
P_VSA_LogP_6numeric10 unique values
0 missing
CATS2D_04_DAnumeric3 unique values
0 missing
ATSC3enumeric75 unique values
0 missing
MAXDNnumeric81 unique values
0 missing
nOnumeric5 unique values
0 missing
P_VSA_e_5numeric8 unique values
0 missing
P_VSA_MR_3numeric7 unique values
0 missing
P_VSA_s_6numeric23 unique values
0 missing
CATS2D_03_DAnumeric4 unique values
0 missing
nHAccnumeric6 unique values
0 missing
SsssCHnumeric87 unique values
0 missing
SAaccnumeric23 unique values
0 missing
ATSC2snumeric89 unique values
0 missing
CATS2D_04_DLnumeric5 unique values
0 missing
SpMax3_Bh.s.numeric24 unique values
0 missing
CATS2D_04_ALnumeric4 unique values
0 missing
ATSC3snumeric90 unique values
0 missing
ATSC6enumeric79 unique values
0 missing
C.025numeric4 unique values
0 missing
ATSC5enumeric84 unique values
0 missing
SaaNHnumeric56 unique values
0 missing
P_VSA_m_3numeric11 unique values
0 missing
Eig02_AEA.dm.numeric55 unique values
0 missing
P_VSA_MR_7numeric12 unique values
0 missing
nPyrrolidinesnumeric2 unique values
0 missing

62 properties

101
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
6.49
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.77
Third quartile of skewness among attributes of the numeric type.
35.8
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.46
First quartile of kurtosis among attributes of the numeric type.
1.74
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.54
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.8
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.85
Mean of means among attributes of the numeric type.
-0.15
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.47
First quartile of standard deviation of attributes of the numeric type.
-0.11
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.73
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.62
Number of attributes divided by the number of instances.
0.56
Mean skewness among attributes of the numeric type.
1.49
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.94
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.42
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.04
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
55.48
Maximum kurtosis among attributes of the numeric type.
-1.5
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
154.08
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.42
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.41
Percentage of numeric attributes.
5.4
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.8
Minimum skewness among attributes of the numeric type.
1.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task