Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL263

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL263

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL263 (TID: 10273), and it has 449 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric271 unique values
0 missing
molecule_id (row identifier)nominal449 unique values
0 missing
SaaNHnumeric93 unique values
0 missing
N.numeric109 unique values
0 missing
NaaNHnumeric2 unique values
0 missing
P_VSA_i_4numeric98 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
P_VSA_e_3numeric93 unique values
0 missing
MATS1mnumeric103 unique values
0 missing
GATS2inumeric243 unique values
0 missing
ATSC1enumeric156 unique values
0 missing
SaaNnumeric340 unique values
0 missing
CATS2D_02_AAnumeric9 unique values
0 missing
SssCH2numeric425 unique values
0 missing
N.075numeric7 unique values
0 missing
NaaNnumeric7 unique values
0 missing
nNnumeric11 unique values
0 missing
P_VSA_m_2numeric364 unique values
0 missing
MATS1enumeric232 unique values
0 missing
X4Avnumeric28 unique values
0 missing
CIC2numeric325 unique values
0 missing
CATS2D_04_ALnumeric28 unique values
0 missing
P_VSA_MR_7numeric52 unique values
0 missing
X3Avnumeric44 unique values
0 missing
CATS2D_09_AAnumeric7 unique values
0 missing
Eig04_AEA.bo.numeric235 unique values
0 missing
CATS2D_01_AAnumeric5 unique values
0 missing
Eig05_AEA.ri.numeric280 unique values
0 missing
C.031numeric3 unique values
0 missing
TPSA.Tot.numeric159 unique values
0 missing
TPSA.NO.numeric146 unique values
0 missing
BLInumeric175 unique values
0 missing
Eig14_EA.ed.numeric200 unique values
0 missing
SM09_AEA.ri.numeric200 unique values
0 missing
Eig05_EA.ri.numeric272 unique values
0 missing
BIC2numeric161 unique values
0 missing
H.numeric115 unique values
0 missing
MATS2inumeric221 unique values
0 missing
SpMin8_Bh.p.numeric199 unique values
0 missing
Eig06_EAnumeric289 unique values
0 missing
SM14_AEA.bo.numeric289 unique values
0 missing
X2Avnumeric64 unique values
0 missing
SpMin3_Bh.e.numeric140 unique values
0 missing
P_VSA_LogP_5numeric186 unique values
0 missing
Eig04_EA.ed.numeric286 unique values
0 missing
SM13_AEA.dm.numeric286 unique values
0 missing
SpMax6_Bh.i.numeric258 unique values
0 missing
P_VSA_i_2numeric363 unique values
0 missing
SpMax4_Bh.m.numeric217 unique values
0 missing
Eig11_AEA.bo.numeric188 unique values
0 missing
Eig11_EA.bo.numeric205 unique values
0 missing
CATS2D_07_ALnumeric25 unique values
0 missing
CATS2D_04_AAnumeric8 unique values
0 missing
Eta_FL_Anumeric99 unique values
0 missing
SpMax5_Bh.e.numeric187 unique values
0 missing
Eig04_AEA.ed.numeric224 unique values
0 missing
X1Avnumeric78 unique values
0 missing
UNIPnumeric142 unique values
0 missing
ZM2Kupnumeric390 unique values
0 missing
Eta_Fnumeric441 unique values
0 missing
SpMax6_Bh.e.numeric244 unique values
0 missing
SpMax5_Bh.v.numeric192 unique values
0 missing
Xindexnumeric133 unique values
0 missing
GATS1enumeric215 unique values
0 missing
SIC2numeric169 unique values
0 missing
Eig15_AEA.ed.numeric197 unique values
0 missing
Eig07_EAnumeric272 unique values
0 missing
SM15_AEA.bo.numeric272 unique values
0 missing
Eig15_EAnumeric193 unique values
0 missing

62 properties

449
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
4.3
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.93
Third quartile of skewness among attributes of the numeric type.
117.2
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.26
First quartile of kurtosis among attributes of the numeric type.
2.46
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.95
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.35
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
26.3
Mean of means among attributes of the numeric type.
-0.01
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.11
First quartile of standard deviation of attributes of the numeric type.
-0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.84
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.15
Number of attributes divided by the number of instances.
0.59
Mean skewness among attributes of the numeric type.
2.44
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
8.88
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.36
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
21.43
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
543.87
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.59
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
7.77
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.05
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task