Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4789

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4789

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4789 (TID: 11042), and it has 207 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric184 unique values
0 missing
molecule_id (row identifier)nominal207 unique values
0 missing
SM05_EA.bo.numeric135 unique values
0 missing
SM07_EA.bo.numeric150 unique values
0 missing
SM08_EA.bo.numeric158 unique values
0 missing
SM08_AEA.bo.numeric159 unique values
0 missing
SM06_EA.bo.numeric162 unique values
0 missing
SpDiam_AEA.bo.numeric152 unique values
0 missing
SpMax2_Bh.p.numeric159 unique values
0 missing
SpMax3_Bh.e.numeric173 unique values
0 missing
SM13_EA.bo.numeric154 unique values
0 missing
SM14_EA.bo.numeric158 unique values
0 missing
SM15_EA.bo.numeric151 unique values
0 missing
SM12_EA.bo.numeric154 unique values
0 missing
SM09_EA.bo.numeric153 unique values
0 missing
SM11_EA.bo.numeric154 unique values
0 missing
SM10_EA.bo.numeric163 unique values
0 missing
Eig03_EA.bo.numeric151 unique values
0 missing
SM13_AEA.ri.numeric151 unique values
0 missing
Eig03_AEA.bo.numeric155 unique values
0 missing
SpMax3_Bh.i.numeric172 unique values
0 missing
SpMax3_Bh.p.numeric163 unique values
0 missing
SpMax3_Bh.v.numeric165 unique values
0 missing
SpMax3_Bh.m.numeric176 unique values
0 missing
SpMax4_Bh.m.numeric165 unique values
0 missing
SM04_EA.bo.numeric153 unique values
0 missing
SM09_EAnumeric152 unique values
0 missing
SpMax4_Bh.p.numeric154 unique values
0 missing
GATS1enumeric147 unique values
0 missing
X1vnumeric185 unique values
0 missing
SM06_AEA.bo.numeric155 unique values
0 missing
SM10_EAnumeric161 unique values
0 missing
SpMax1_Bh.e.numeric132 unique values
0 missing
SdOnumeric179 unique values
0 missing
SddssSnumeric124 unique values
0 missing
P_VSA_e_3numeric64 unique values
0 missing
P_VSA_i_4numeric73 unique values
0 missing
Eig01_AEA.bo.numeric107 unique values
0 missing
SpMax_AEA.bo.numeric107 unique values
0 missing
D.Dtr05numeric73 unique values
0 missing
ATS1mnumeric163 unique values
0 missing
SpMax2_Bh.e.numeric159 unique values
0 missing
X2vnumeric195 unique values
0 missing
X2solnumeric172 unique values
0 missing
SM08_EAnumeric158 unique values
0 missing
SpMax4_Bh.e.numeric163 unique values
0 missing
SpMax4_Bh.v.numeric156 unique values
0 missing
SM05_AEA.bo.numeric154 unique values
0 missing
SpDiam_AEA.ed.numeric140 unique values
0 missing
SpMax1_Bh.i.numeric138 unique values
0 missing
SpMax1_Bh.v.numeric139 unique values
0 missing
SM06_EAnumeric158 unique values
0 missing
MAXDNnumeric180 unique values
0 missing
SM12_EAnumeric160 unique values
0 missing
SM14_AEA.ed.numeric156 unique values
0 missing
SM15_AEA.ed.numeric149 unique values
0 missing
P_VSA_s_1numeric10 unique values
0 missing
SM05_EAnumeric80 unique values
0 missing
SM13_EA.ed.numeric141 unique values
0 missing
SM14_EA.ed.numeric148 unique values
0 missing
SM15_EA.ed.numeric141 unique values
0 missing
X3vnumeric194 unique values
0 missing
CATS2D_09_PLnumeric6 unique values
0 missing
SpMin3_Bh.i.numeric155 unique values
0 missing
ZM2Madnumeric188 unique values
0 missing
SM05_EA.ed.numeric148 unique values
0 missing
SM06_EA.ed.numeric154 unique values
0 missing
SM09_AEA.ed.numeric153 unique values
0 missing
SM07_EA.ed.numeric153 unique values
0 missing
SM08_EA.ed.numeric157 unique values
0 missing

62 properties

207
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.34
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.41
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-1.57
Mean skewness among attributes of the numeric type.
7.55
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.6
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.15
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
21.55
Maximum kurtosis among attributes of the numeric type.
-3.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
170
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.75
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
16.45
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.52
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.59
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.67
Third quartile of skewness among attributes of the numeric type.
77.52
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.59
First quartile of kurtosis among attributes of the numeric type.
2.54
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.67
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.42
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.83
Mean of means among attributes of the numeric type.
-2.72
First quartile of skewness among attributes of the numeric type.
0.07
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.44
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task