Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4708

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4708

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4708 (TID: 10277), and it has 886 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric75 unique values
0 missing
molecule_id (row identifier)nominal886 unique values
0 missing
P_VSA_s_5numeric62 unique values
0 missing
CATS2D_02_DAnumeric10 unique values
0 missing
P_VSA_e_3numeric307 unique values
0 missing
Eta_betanumeric154 unique values
0 missing
SpMax6_Bh.m.numeric532 unique values
0 missing
Uinumeric30 unique values
0 missing
H.048numeric4 unique values
0 missing
Hynumeric421 unique values
0 missing
H.050numeric11 unique values
0 missing
nHDonnumeric11 unique values
0 missing
Eig07_AEA.bo.numeric526 unique values
0 missing
SssNHnumeric576 unique values
0 missing
C.033numeric4 unique values
0 missing
CATS2D_02_DLnumeric11 unique values
0 missing
P_VSA_MR_6numeric735 unique values
0 missing
SpMax4_Bh.m.numeric510 unique values
0 missing
P_VSA_m_2numeric817 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
ZM2Madnumeric851 unique values
0 missing
SpMax5_Bh.m.numeric521 unique values
0 missing
TPSA.Tot.numeric556 unique values
0 missing
Eta_FLnumeric776 unique values
0 missing
SpMax2_Bh.i.numeric275 unique values
0 missing
SAdonnumeric99 unique values
0 missing
ATS2mnumeric557 unique values
0 missing
Eta_betaPnumeric54 unique values
0 missing
ATSC5mnumeric867 unique values
0 missing
IC5numeric504 unique values
0 missing
Eig04_EA.bo.numeric552 unique values
0 missing
SM14_AEA.ri.numeric552 unique values
0 missing
nNnumeric13 unique values
0 missing
SpMax8_Bh.m.numeric494 unique values
0 missing
CATS2D_04_DLnumeric14 unique values
0 missing
ATS1mnumeric537 unique values
0 missing
Eig08_EA.bo.numeric565 unique values
0 missing
nBMnumeric28 unique values
0 missing
Ucnumeric28 unique values
0 missing
Eig13_AEA.ri.numeric627 unique values
0 missing
Eig13_EA.ri.numeric602 unique values
0 missing
SpMax3_Bh.e.numeric400 unique values
0 missing
SpMax3_Bh.v.numeric429 unique values
0 missing
Chi1_EA.dm.numeric767 unique values
0 missing
Eig07_EAnumeric530 unique values
0 missing
SM15_AEA.bo.numeric530 unique values
0 missing
Eig08_AEA.bo.numeric526 unique values
0 missing
Eig08_AEA.dm.numeric571 unique values
0 missing
Eig07_AEA.ri.numeric590 unique values
0 missing
SpMax7_Bh.m.numeric500 unique values
0 missing
X1solnumeric677 unique values
0 missing
Eig10_AEA.ed.numeric543 unique values
0 missing
Eig12_EA.bo.numeric574 unique values
0 missing
GMTIVnumeric856 unique values
0 missing
Eig09_AEA.ri.numeric573 unique values
0 missing
Eig14_EA.bo.numeric607 unique values
0 missing
NssNHnumeric5 unique values
0 missing
Eig09_EA.bo.numeric560 unique values
0 missing
X4solnumeric749 unique values
0 missing
Eig09_EA.ri.numeric560 unique values
0 missing
Eig09_EAnumeric505 unique values
0 missing
SM03_AEA.dm.numeric505 unique values
0 missing
ATSC5pnumeric840 unique values
0 missing
Eig08_EA.ed.numeric663 unique values
0 missing
SM03_AEA.ri.numeric663 unique values
0 missing
Eig13_AEA.bo.numeric551 unique values
0 missing
IC4numeric510 unique values
0 missing
Eig13_EA.bo.numeric590 unique values
0 missing
Eig07_EA.ri.numeric576 unique values
0 missing
X2solnumeric739 unique values
0 missing
SpMax5_Bh.e.numeric494 unique values
0 missing

62 properties

886
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.08
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.94
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.29
Mean skewness among attributes of the numeric type.
3.31
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
334.57
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.2
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.74
Second quartile (Median) of standard deviation of attributes of the numeric type.
58.63
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
32393.23
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
7.77
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.59
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.49
Maximum skewness among attributes of the numeric type.
0.08
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.83
Third quartile of skewness among attributes of the numeric type.
23064.5
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.2
First quartile of kurtosis among attributes of the numeric type.
2.67
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.62
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.51
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
477.98
Mean of means among attributes of the numeric type.
-0.49
First quartile of skewness among attributes of the numeric type.
0.28
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.36
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task