Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5036

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5036

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5036 (TID: 20158), and it has 257 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric146 unique values
0 missing
molecule_id (row identifier)nominal257 unique values
0 missing
SpMax1_Bh.i.numeric52 unique values
0 missing
P_VSA_e_3numeric37 unique values
0 missing
CATS2D_05_ALnumeric15 unique values
0 missing
SaaaCnumeric112 unique values
0 missing
ATSC6inumeric220 unique values
0 missing
D.Dtr09numeric113 unique values
0 missing
SpMin4_Bh.m.numeric145 unique values
0 missing
P_VSA_m_2numeric209 unique values
0 missing
ATSC1inumeric161 unique values
0 missing
X2solnumeric181 unique values
0 missing
Eig01_EA.bo.numeric37 unique values
0 missing
SM11_AEA.ri.numeric37 unique values
0 missing
SpDiam_EA.bo.numeric37 unique values
0 missing
SpMax_EA.bo.numeric37 unique values
0 missing
MAXDPnumeric211 unique values
0 missing
Eig11_EAnumeric97 unique values
0 missing
SM05_AEA.dm.numeric97 unique values
0 missing
ATS6snumeric210 unique values
0 missing
SpMin2_Bh.e.numeric68 unique values
0 missing
X0solnumeric104 unique values
0 missing
ATS6vnumeric202 unique values
0 missing
Eig07_AEA.ri.numeric199 unique values
0 missing
Eig07_EA.ri.numeric198 unique values
0 missing
SpMax5_Bh.p.numeric164 unique values
0 missing
MATS7inumeric174 unique values
0 missing
SM04_EA.bo.numeric153 unique values
0 missing
ATS3mnumeric194 unique values
0 missing
SpMin8_Bh.m.numeric100 unique values
0 missing
Psi_e_0numeric228 unique values
0 missing
SsFnumeric202 unique values
0 missing
SpMax8_Bh.m.numeric121 unique values
0 missing
S0Knumeric106 unique values
0 missing
Eig15_AEA.bo.numeric116 unique values
0 missing
SpMax8_Bh.e.numeric110 unique values
0 missing
SpMax8_Bh.i.numeric95 unique values
0 missing
SNarnumeric69 unique values
0 missing
TIC1numeric211 unique values
0 missing
Eig08_AEA.ri.numeric189 unique values
0 missing
AMRnumeric228 unique values
0 missing
SpMax5_Bh.v.numeric175 unique values
0 missing
SpMin4_Bh.p.numeric149 unique values
0 missing
SpAD_EA.ri.numeric243 unique values
0 missing
Eig03_AEA.bo.numeric96 unique values
0 missing
Eig08_AEA.dm.numeric187 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
nR09numeric2 unique values
0 missing
PCDnumeric149 unique values
0 missing
SM07_EA.bo.numeric138 unique values
0 missing
SpMin1_Bh.e.numeric61 unique values
0 missing
X1Madnumeric239 unique values
0 missing
Chi1_EA.ri.numeric240 unique values
0 missing
SpAD_AEA.bo.numeric193 unique values
0 missing
SpAD_AEA.ri.numeric244 unique values
0 missing
SpAD_EAnumeric184 unique values
0 missing
Eig14_AEA.ed.numeric91 unique values
0 missing
ICRnumeric133 unique values
0 missing
SM06_EA.bo.numeric143 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
ATS1mnumeric157 unique values
0 missing
X1solnumeric158 unique values
0 missing
Eig10_AEA.dm.numeric145 unique values
0 missing
Eig07_AEA.bo.numeric161 unique values
0 missing
Eig14_EAnumeric95 unique values
0 missing

62 properties

257
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.08
Mean skewness among attributes of the numeric type.
4.05
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.16
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.01
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.98
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
22.99
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
206.11
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.35
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
13.9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.46
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.37
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.33
Third quartile of skewness among attributes of the numeric type.
65.72
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.99
First quartile of kurtosis among attributes of the numeric type.
1.98
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.82
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.62
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
20.06
Mean of means among attributes of the numeric type.
-0.39
First quartile of skewness among attributes of the numeric type.
0.25
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task