Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4824

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4824

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4824 (TID: 10275), and it has 129 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric44 unique values
0 missing
molecule_id (row identifier)nominal129 unique values
0 missing
SaaCHnumeric124 unique values
0 missing
CATS2D_05_DAnumeric7 unique values
0 missing
MATS7pnumeric110 unique values
0 missing
ATSC8vnumeric125 unique values
0 missing
AMWnumeric90 unique values
0 missing
GATS7vnumeric116 unique values
0 missing
AACnumeric85 unique values
0 missing
IC0numeric85 unique values
0 missing
ATSC8inumeric121 unique values
0 missing
SpMin4_Bh.e.numeric83 unique values
0 missing
GATS5enumeric108 unique values
0 missing
MATS5enumeric100 unique values
0 missing
ON1Vnumeric104 unique values
0 missing
Eta_sh_pnumeric85 unique values
0 missing
ATS7inumeric118 unique values
0 missing
ATS8enumeric116 unique values
0 missing
SIC2numeric83 unique values
0 missing
BIC2numeric79 unique values
0 missing
ATS3enumeric104 unique values
0 missing
SpMin4_Bh.v.numeric86 unique values
0 missing
CATS2D_01_LLnumeric14 unique values
0 missing
SpMax6_Bh.e.numeric100 unique values
0 missing
SpMax6_Bh.i.numeric92 unique values
0 missing
SpMin4_Bh.p.numeric79 unique values
0 missing
ATS3inumeric108 unique values
0 missing
Sinumeric96 unique values
0 missing
ATS7vnumeric113 unique values
0 missing
GATS7pnumeric110 unique values
0 missing
GATS7inumeric113 unique values
0 missing
CATS2D_06_LLnumeric15 unique values
0 missing
SpMin4_Bh.m.numeric80 unique values
0 missing
ATS2enumeric97 unique values
0 missing
ATS2inumeric99 unique values
0 missing
ATS4inumeric109 unique values
0 missing
Senumeric96 unique values
0 missing
SpMin4_Bh.s.numeric75 unique values
0 missing
SpMin3_Bh.i.numeric73 unique values
0 missing
SpMin3_Bh.p.numeric94 unique values
0 missing
nHMnumeric5 unique values
0 missing
SpMin3_Bh.m.numeric75 unique values
0 missing
Eig14_AEA.dm.numeric84 unique values
0 missing
MATS7inumeric111 unique values
0 missing
SpMin3_Bh.e.numeric76 unique values
0 missing
JGI4numeric31 unique values
0 missing
ATS6enumeric118 unique values
0 missing
GATS4mnumeric103 unique values
0 missing
CIC2numeric108 unique values
0 missing
GNarnumeric55 unique values
0 missing
X0Anumeric42 unique values
0 missing
SpMax4_Bh.e.numeric79 unique values
0 missing
SpMax4_Bh.i.numeric79 unique values
0 missing
SpMax4_Bh.v.numeric89 unique values
0 missing
SpMax5_Bh.i.numeric88 unique values
0 missing
ATS7enumeric114 unique values
0 missing
ATS8inumeric116 unique values
0 missing
SpMax6_Bh.v.numeric103 unique values
0 missing
MATS7vnumeric106 unique values
0 missing
CENTnumeric85 unique values
0 missing
SIC0numeric67 unique values
0 missing
IC1numeric103 unique values
0 missing
ATSC7inumeric119 unique values
0 missing
SpMax1_Bh.m.numeric66 unique values
0 missing
ATS8pnumeric120 unique values
0 missing
ATS4enumeric112 unique values
0 missing
SssOnumeric70 unique values
0 missing

62 properties

129
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.52
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.92
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.13
Mean skewness among attributes of the numeric type.
2.51
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
11.74
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.12
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.7
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
4.38
Maximum kurtosis among attributes of the numeric type.
-0.15
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1449.74
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.32
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
4.82
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.61
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.37
Third quartile of skewness among attributes of the numeric type.
713.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.31
First quartile of kurtosis among attributes of the numeric type.
0.39
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.12
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.57
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
26.44
Mean of means among attributes of the numeric type.
-0.3
First quartile of skewness among attributes of the numeric type.
0.05
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task