Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3198

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3198

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3198 (TID: 10666), and it has 229 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric159 unique values
0 missing
molecule_id (row identifier)nominal229 unique values
0 missing
D.Dtr08numeric31 unique values
0 missing
Eig04_AEA.bo.numeric142 unique values
0 missing
Eig06_EA.bo.numeric151 unique values
0 missing
Chi0_EA.dm.numeric148 unique values
0 missing
D.Dtr12numeric30 unique values
0 missing
SM15_EA.ri.numeric167 unique values
0 missing
Chi1_EA.dm.numeric167 unique values
0 missing
Eig05_AEA.bo.numeric148 unique values
0 missing
D.Dtr05numeric77 unique values
0 missing
GATS4snumeric181 unique values
0 missing
SM11_EA.ed.numeric130 unique values
0 missing
GGI9numeric107 unique values
0 missing
SM04_AEA.bo.numeric152 unique values
0 missing
SM05_AEA.bo.numeric156 unique values
0 missing
GGI3numeric83 unique values
0 missing
MATS6pnumeric157 unique values
0 missing
Eig06_AEA.bo.numeric154 unique values
0 missing
MATS6vnumeric154 unique values
0 missing
SM03_AEA.bo.numeric128 unique values
0 missing
ATS8mnumeric186 unique values
0 missing
GGI8numeric105 unique values
0 missing
GGI1numeric16 unique values
0 missing
piPC05numeric159 unique values
0 missing
SM06_AEA.bo.numeric154 unique values
0 missing
SM07_AEA.bo.numeric165 unique values
0 missing
SM08_AEA.bo.numeric172 unique values
0 missing
MPC10numeric111 unique values
0 missing
Eig06_EAnumeric142 unique values
0 missing
SM14_AEA.bo.numeric142 unique values
0 missing
piPC06numeric166 unique values
0 missing
PCDnumeric163 unique values
0 missing
MATS6mnumeric144 unique values
0 missing
MATS5inumeric147 unique values
0 missing
P_VSA_m_2numeric160 unique values
0 missing
SpMax3_Bh.v.numeric120 unique values
0 missing
SM03_EAnumeric16 unique values
0 missing
Eig05_EAnumeric142 unique values
0 missing
GGI6numeric117 unique values
0 missing
SM13_AEA.bo.numeric142 unique values
0 missing
SpMax3_Bh.p.numeric111 unique values
0 missing
SpMin3_Bh.e.numeric101 unique values
0 missing
GATS6vnumeric155 unique values
0 missing
piPC10numeric168 unique values
0 missing
piPC03numeric127 unique values
0 missing
piPC04numeric156 unique values
0 missing
piPC07numeric168 unique values
0 missing
Eig09_AEA.bo.numeric116 unique values
0 missing
Eig09_EA.bo.numeric110 unique values
0 missing
GGI2numeric22 unique values
0 missing
SRW09numeric20 unique values
0 missing
Eig05_AEA.ri.numeric164 unique values
0 missing
SM14_EA.ri.numeric167 unique values
0 missing
SM13_EA.ri.numeric168 unique values
0 missing
GATS3inumeric139 unique values
0 missing
SpMax3_Bh.e.numeric116 unique values
0 missing
NssCH2numeric24 unique values
0 missing
SM04_EA.bo.numeric149 unique values
0 missing
SssssCnumeric51 unique values
0 missing
P_VSA_i_2numeric157 unique values
0 missing
ZM2Pernumeric203 unique values
0 missing
GATS6pnumeric157 unique values
0 missing
SpMin3_Bh.i.numeric99 unique values
0 missing
Eig10_EAnumeric88 unique values
0 missing

62 properties

229
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
4.23
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.38
Third quartile of skewness among attributes of the numeric type.
151.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.16
First quartile of kurtosis among attributes of the numeric type.
1.13
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.82
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.98
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.27
Mean of means among attributes of the numeric type.
-2.42
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.
-0.22
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.85
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.28
Number of attributes divided by the number of instances.
-0.81
Mean skewness among attributes of the numeric type.
3.74
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
7.13
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.32
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.9
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
23.69
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
536.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.97
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
8.34
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.8
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task