Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1902

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1902

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1902 (TID: 80), and it has 511 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric312 unique values
0 missing
molecule_id (row identifier)nominal511 unique values
0 missing
BIC0numeric111 unique values
0 missing
Eig11_EA.dm.numeric20 unique values
0 missing
Eig10_EA.dm.numeric32 unique values
0 missing
nRORnumeric7 unique values
0 missing
O.059numeric7 unique values
0 missing
P_VSA_MR_3numeric22 unique values
0 missing
Eig12_EA.dm.numeric19 unique values
0 missing
Eig09_EA.dm.numeric41 unique values
0 missing
NsssCHnumeric14 unique values
0 missing
nCrtnumeric6 unique values
0 missing
C.012numeric2 unique values
0 missing
SssssCnumeric165 unique values
0 missing
Eig03_AEA.bo.numeric223 unique values
0 missing
CATS2D_03_LLnumeric30 unique values
0 missing
CATS2D_06_DLnumeric12 unique values
0 missing
C.003numeric8 unique values
0 missing
CATS2D_06_ALnumeric31 unique values
0 missing
Eig08_EA.dm.numeric40 unique values
0 missing
Eig06_EAnumeric268 unique values
0 missing
SM14_AEA.bo.numeric268 unique values
0 missing
O.056numeric5 unique values
0 missing
CATS2D_01_LLnumeric29 unique values
0 missing
nCtnumeric8 unique values
0 missing
CATS2D_07_LLnumeric43 unique values
0 missing
CATS2D_07_DLnumeric15 unique values
0 missing
CATS2D_09_DLnumeric12 unique values
0 missing
C.017numeric4 unique values
0 missing
nR.Ctnumeric4 unique values
0 missing
X5vnumeric454 unique values
0 missing
ATSC7snumeric479 unique values
0 missing
CATS2D_04_LLnumeric26 unique values
0 missing
SpMax6_Bh.e.numeric234 unique values
0 missing
ATS1snumeric378 unique values
0 missing
CATS2D_04_DAnumeric6 unique values
0 missing
Eig13_EA.dm.numeric21 unique values
0 missing
SdsCHnumeric115 unique values
0 missing
CATS2D_09_ALnumeric36 unique values
0 missing
Eig04_AEA.ed.numeric228 unique values
0 missing
C.001numeric11 unique values
0 missing
nCpnumeric11 unique values
0 missing
SpMin8_Bh.v.numeric241 unique values
0 missing
nROHnumeric5 unique values
0 missing
Eig07_AEA.ed.numeric255 unique values
0 missing
SpMax6_Bh.v.numeric240 unique values
0 missing
P_VSA_i_3numeric319 unique values
0 missing
Eig10_AEA.ed.numeric268 unique values
0 missing
P_VSA_LogP_3numeric72 unique values
0 missing
DELSnumeric479 unique values
0 missing
CATS2D_05_DLnumeric11 unique values
0 missing
nRCONR2numeric6 unique values
0 missing
CATS2D_07_DAnumeric6 unique values
0 missing
Eig08_EA.ed.numeric306 unique values
0 missing
SM03_AEA.ri.numeric306 unique values
0 missing
SM05_EA.ri.numeric354 unique values
0 missing
SpMin8_Bh.p.numeric256 unique values
0 missing
Eig06_AEA.dm.numeric286 unique values
0 missing
Eig09_EA.ed.numeric294 unique values
0 missing
SM04_AEA.ri.numeric294 unique values
0 missing
Eig06_EA.ed.numeric297 unique values
0 missing
SM15_AEA.dm.numeric297 unique values
0 missing
nOHsnumeric4 unique values
0 missing
SpMin7_Bh.m.numeric202 unique values
0 missing
SpMin8_Bh.m.numeric234 unique values
0 missing
SPInumeric375 unique values
0 missing
S0Knumeric264 unique values
0 missing

62 properties

511
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
2.31
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.51
Third quartile of skewness among attributes of the numeric type.
278.07
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.48
First quartile of kurtosis among attributes of the numeric type.
2.76
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.8
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.26
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
20.67
Mean of means among attributes of the numeric type.
-0.15
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.46
First quartile of standard deviation of attributes of the numeric type.
-0.16
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
0.68
Mean skewness among attributes of the numeric type.
2.15
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
11.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.9
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.13
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
12.64
Maximum kurtosis among attributes of the numeric type.
-0.73
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
609.9
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.4
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
6.1
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.65
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task